Spaces:
Sleeping
Sleeping
File size: 3,806 Bytes
2f0b879 bebd6a0 2f0b879 bebd6a0 2f0b879 bebd6a0 2f0b879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import logging
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
log_level = os.environ.get("LOG_LEVEL", "WARNING")
logging.basicConfig(encoding='utf-8', level=log_level)
logging.info("Creating Inference Client")
client = InferenceClient(
"cognitivecomputations/dolphin-2.6-mistral-7b"
)
def format_prompt(message, history):
"""Formats the prompt for the AI"""
logging.info("Formatting Prompt")
logging.debug("Input Message: %s", message)
logging.debug("Input History: %s", history)
prompt = "<|im_start|>system\n" +\
"You are Dolphin, a helpful AI assistant.<|im_end|>"
prompt += "<|im_start|>user\n" + f"{message}<|im_end|>"
prompt += "<|im_start|>assistant"
return prompt
def generate(
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
logging.info("Generating Response")
logging.debug("Input Prompt: %s", prompt)
logging.debug("Input History: %s", history)
logging.debug("Input System Prompt: %s", system_prompt)
logging.debug("Input Temperature: %s", temperature)
logging.debug("Input Max New Tokens: %s", max_new_tokens)
logging.debug("Input Top P: %s", top_p)
logging.debug("Input Repetition Penalty: %s", repetition_penalty)
logging.info("Converting Parameters to Correct Type")
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
logging.debug("Temperature: %s", temperature)
logging.debug("Top P: %s", top_p)
logging.info("Creating Generate kwargs")
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
logging.debug("Generate Args: %s", generate_kwargs)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
logging.debug("Prompt: %s", formatted_prompt)
logging.info("Generating Text")
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
logging.info("Creating Output")
output = ""
for response in stream:
output += response.token.text
yield output
logging.debug("Output: %s", output)
return output
additional_inputs = [
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples = []
logging.info("Creating Chat Interface")
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False,
show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Dolphin Mistral",
examples=examples,
concurrency_limit=20,
).launch(show_api=False) |