import os import logging from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr log_level = os.environ.get("LOG_LEVEL", "WARNING") logging.basicConfig(encoding='utf-8', level=log_level) logging.info("Creating Inference Client") client = InferenceClient( "cognitivecomputations/dolphin-2.6-mistral-7b" ) def format_prompt(message, history): """Formats the prompt for the AI""" logging.info("Formatting Prompt") logging.debug("Input Message: %s", message) logging.debug("Input History: %s", history) prompt = "<|im_start|>system\n" +\ "You are Dolphin, a helpful AI assistant.<|im_end|>" prompt += "<|im_start|>user\n" + f"{message}<|im_end|>" prompt += "<|im_start|>assistant" return prompt def generate( prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): logging.info("Generating Response") logging.debug("Input Prompt: %s", prompt) logging.debug("Input History: %s", history) logging.debug("Input System Prompt: %s", system_prompt) logging.debug("Input Temperature: %s", temperature) logging.debug("Input Max New Tokens: %s", max_new_tokens) logging.debug("Input Top P: %s", top_p) logging.debug("Input Repetition Penalty: %s", repetition_penalty) logging.info("Converting Parameters to Correct Type") temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) logging.debug("Temperature: %s", temperature) logging.debug("Top P: %s", top_p) logging.info("Creating Generate kwargs") generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) logging.debug("Generate Args: %s", generate_kwargs) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) logging.debug("Prompt: %s", formatted_prompt) logging.info("Generating Text") stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) logging.info("Creating Output") output = "" for response in stream: output += response.token.text yield output logging.debug("Output: %s", output) return output additional_inputs = [ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] examples = [] logging.info("Creating Chat Interface") gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Dolphin Mistral", examples=examples, concurrency_limit=20, ).launch(show_api=False)