Spaces:
Runtime error
Runtime error
File size: 2,370 Bytes
48d7b1f fa734d4 48d7b1f 6fafc47 48d7b1f 4d1a0d0 f1c9abf 4d1a0d0 fa734d4 4d1a0d0 48d7b1f e4f8800 48d7b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import pipeline
import gradio as gr
llama_model = "meta-llama/Llama-2-7b-chat-hf"
access_token = " "
model = AutoModelForCausalLM.from_pretrained(llama_model, token=access_token)
tokenizer = AutoTokenizer.from_pretrained(llama_model, token=access_token)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
SYSTEM_PROMPT = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
"""
# Formatting function for message and history
def message_format(message: str, history: list, memory_limit: int = 5) -> str:
# always keep len(history) <= memory_limit
if len(history) > memory_limit:
history = history[-memory_limit:]
if len(history) == 0:
return SYSTEM_PROMPT + f"{message} [/INST]"
formatted_message = SYSTEM_PROMPT + f"{history[0][0]} [/INST] {history[0][1]} </s>"
# Handle conversation history
for user_msg, model_answer in history[1:]:
formatted_message += f"<s>[INST] {user_msg} [/INST] {model_answer} </s>"
# Handle the current message
formatted_message += f"<s>[INST] {message} [/INST]"
return formatted_message
# Generate a response from the Llama model
def llama_response(message: str, history: list) -> str:
query = message_format(message, history)
response = ""
sequences = pipeline(
query,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1050,
)
generated_text = sequences[0]['generated_text']
response = generated_text[len(query):] # Remove the prompt from the output
print("Chatbot:", response.strip())
return response.strip()
gr.ChatInterface(llama_response).launch() |