Spaces:
Runtime error
Runtime error
File size: 9,130 Bytes
672e4c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# -*- coding: utf-8 -*-
"""Copy NGANof .ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1w2sRg7uNq-lx67zg9Afcr58f2P_R-5ca
"""
!pip install ninja
!sudo apt-get update
!sudo apt-get install build-essential
!rm -rf ~/.cache/torch_extensions/
!pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
!pip install requests tqdm
# Commented out IPython magic to ensure Python compatibility.
!git clone https://github.com/NVlabs/stylegan2-ada-pytorch.git
# %cd stylegan2-ada-pytorch
!wget https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
from google.colab import drive
drive.mount('/content/drive')
# Import necessary libraries
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
import PIL.Image
import numpy as np
import dnnlib
import legacy
# Load pre-trained model
import pickle
with open('ffhq.pkl', 'rb') as f:
data = pickle.load(f)
print(data.keys())
# Check if CUDA is available, and if so, move the model to GPU
if torch.cuda.is_available():
G = data['G_ema'].cuda()
D = data['D'].cuda()
print("Model loaded on GPU.")
else:
G = data['G_ema'] # Keep the model on CPU
D = data['D'].cuda()
print("CUDA not available, model loaded on CPU.")
print(type(G))
print(G)
print(type(D))
print(D)
def generate_images(G, z=None, num_images=1, truncation_psi=0.7, seed=None):
if seed is not None:
torch.manual_seed(seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
print("CUDA is available. Using GPU.")
else:
print("CUDA is not available. Using CPU.")
if z is None:
z = torch.randn((num_images, G.z_dim), device=device)
else:
z = z.to(device)
print("Latent vectors prepared.")
ws = G.mapping(z, None, truncation_psi=truncation_psi)
print("Mapping done.")
img = G.synthesis(ws, noise_mode='const')
print("Synthesis done.")
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy()
print("Image tensor converted to numpy array.")
return [Image.fromarray(i) for i in img]
from PIL import Image # Add this import
# Generate 4 images
generated_images = generate_images(G, num_images=4, truncation_psi=0.7, seed=42)
# Generate and display 4 images
#generated_images = generate_images(G, num_images=4, truncation_psi=0.7, seed=42)
print("Images generated.")
for i, img in enumerate(generated_images):
display(img)
# Fine-tuning setup
import os
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
# Advanced fine-tuning setup
import torch
from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.utils import save_image
# Custom dataset
class CustomDataset(Dataset):
def __init__(self, image_dir, transform=None):
self.image_dir = image_dir
self.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]
if len(self.image_files) == 0:
raise ValueError(f"No image files found in directory: {image_dir}")
self.transform = transform
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_path = os.path.join(self.image_dir, self.image_files[idx])
image = PIL.Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image
!pip install datasets
from datasets import load_dataset
ds = load_dataset("TrainingDataPro/black-people-liveness-detection-video-dataset")
# Set up data loading
transform = transforms.Compose([
transforms.Resize((G.img_resolution, G.img_resolution)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = CustomDataset("/content/drive/MyDrive/Colab Notebooks/part2", transform=transform)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# Fine-tuning loop (advanced)
optimizer_g = Adam(G.parameters(), lr=0.0001, betas=(0, 0.99), eps=1e-8)
optimizer_d = Adam(D.parameters(), lr=0.0001, betas=(0, 0.99), eps=1e-8)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optimizer_g, gamma=0.99)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optimizer_d, gamma=0.99)
num_epochs = 100
for epoch in range(num_epochs):
for batch in dataloader:
real_images = batch.cuda()
# Generate fake images
z = torch.randn([batch.shape[0], G.z_dim]).cuda()
fake_images = G(z, None) # Replace None with actual labels if available
# Ensure fake_images requires gradients
fake_images.requires_grad_(True)
# Prepare a dummy label (replace with actual labels if available)
c = None # Replace 'some_dimension' with the correct size
# Compute loss (using BCE loss)
g_loss = torch.mean(torch.log(1 - D(fake_images, c))) # Pass the dummy label to D
d_loss_real = torch.mean(torch.log(D(real_images, c))) # Pass the dummy label to D
d_loss_fake = torch.mean(torch.log(1 - D(fake_images, c))) # Pass the dummy label to D
d_loss = -d_loss_real - d_loss_fake
# Check for NaNs
if torch.isnan(g_loss) or torch.isnan(d_loss):
#print("NaN detected in loss. Skipping update.")
continue
# Update generator
optimizer_g.zero_grad()
g_loss.backward()
torch.nn.utils.clip_grad_norm_(G.parameters(), max_norm=1) # Clip gradients
optimizer_g.step()
# Update discriminator
optimizer_d.zero_grad()
d_loss.backward()
torch.nn.utils.clip_grad_norm_(D.parameters(), max_norm=1) # Clip gradients
optimizer_d.step()
# Update learning rate
scheduler_g.step()
scheduler_d.step()
print(f"Epoch {epoch+1}/{num_epochs}, G Loss: {g_loss.item()}")
# Save the full model
torch.save(G, '/content/drive/MyDrive/full_model_stylegan.pt')
for param in G.parameters():
param.requires_grad = True
# Generate new images with fine-tuned model
z = torch.randn([4, G.z_dim]).cuda() # Generate 4 random latent vectors
imgs = generate_images(G, z, truncation_psi=0.7)
# Display each generated image
for img in imgs:
display(img)
# Save the fine-tuned model
torch.save(G.state_dict(), 'fine_tuned_stylegan.pth')
!pip install gradio
import torch
import torchvision.transforms as transforms
from PIL import Image
import gradio as gr
from tqdm import tqdm
def optimize_latent_vector(G, target_image, num_iterations=1000):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
target_image = transforms.Resize((G.img_resolution, G.img_resolution))(target_image)
target_tensor = transforms.ToTensor()(target_image).unsqueeze(0).to(device)
target_tensor = (target_tensor * 2) - 1 # Normalize to [-1, 1]
latent_vector = torch.randn((1, G.z_dim), device=device, requires_grad=True)
optimizer = torch.optim.Adam([latent_vector], lr=0.1)
for i in tqdm(range(num_iterations), desc="Optimizing latent vector"):
optimizer.zero_grad()
generated_image = G(latent_vector, None)
loss = torch.nn.functional.mse_loss(generated_image, target_tensor)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print(f'Iteration {i+1}/{num_iterations}, Loss: {loss.item()}')
return latent_vector.detach()
def generate_from_upload(uploaded_image):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Optimize latent vector for the uploaded image
optimized_z = optimize_latent_vector(G, uploaded_image)
# Generate variations
num_variations = 4
variation_strength = 0.1
varied_z = optimized_z + torch.randn((num_variations, G.z_dim), device=device) * variation_strength
# Generate the variations
with torch.no_grad():
imgs = G(varied_z, c=None, truncation_psi=0.7, noise_mode='const')
imgs = (imgs * 127.5 + 128).clamp(0, 255).to(torch.uint8)
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
# Convert the generated image tensors to PIL Images
generated_images = [Image.fromarray(img) for img in imgs]
# Return the images separately
return generated_images[0], generated_images[1], generated_images[2], generated_images[3]
# Create the Gradio interface
iface = gr.Interface(
fn=generate_from_upload,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil") for _ in range(4)],
title="StyleGAN Image Variation Generator"
)
# Launch the Gradio interface
iface.launch(share=True, debug=True)
# If you want to test it without the Gradio interface:
"""
# Load an image explicitly
image_path = "path/to/your/image.jpg"
image = Image.open(image_path)
# Call the generate method explicitly
generated_images = generate_from_upload(image)
# Display the generated images
for img in generated_images:
img.show()
"""
|