Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,26 @@
|
|
1 |
import torch
|
2 |
-
import torchvision.transforms as transforms
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
|
|
|
|
5 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def optimize_latent_vector(G, target_image, num_iterations=1000):
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
target_image = transforms.Resize((G.img_resolution, G.img_resolution))(target_image)
|
@@ -29,25 +47,20 @@ def optimize_latent_vector(G, target_image, num_iterations=1000):
|
|
29 |
def generate_from_upload(uploaded_image):
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
|
32 |
-
# Optimize latent vector for the uploaded image
|
33 |
optimized_z = optimize_latent_vector(G, uploaded_image)
|
34 |
|
35 |
-
# Generate variations
|
36 |
num_variations = 4
|
37 |
variation_strength = 0.1
|
38 |
varied_z = optimized_z + torch.randn((num_variations, G.z_dim), device=device) * variation_strength
|
39 |
|
40 |
-
# Generate the variations
|
41 |
with torch.no_grad():
|
42 |
imgs = G(varied_z, c=None, truncation_psi=0.7, noise_mode='const')
|
43 |
|
44 |
imgs = (imgs * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
45 |
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
|
46 |
|
47 |
-
# Convert the generated image tensors to PIL Images
|
48 |
generated_images = [Image.fromarray(img) for img in imgs]
|
49 |
|
50 |
-
# Return the images separately
|
51 |
return generated_images[0], generated_images[1], generated_images[2], generated_images[3]
|
52 |
|
53 |
# Create the Gradio interface
|
@@ -60,17 +73,3 @@ iface = gr.Interface(
|
|
60 |
|
61 |
# Launch the Gradio interface
|
62 |
iface.launch(share=True, debug=True)
|
63 |
-
|
64 |
-
# If you want to test it without the Gradio interface:
|
65 |
-
"""
|
66 |
-
# Load an image explicitly
|
67 |
-
image_path = "path/to/your/image.jpg"
|
68 |
-
image = Image.open(image_path)
|
69 |
-
|
70 |
-
# Call the generate method explicitly
|
71 |
-
generated_images = generate_from_upload(image)
|
72 |
-
|
73 |
-
# Display the generated images
|
74 |
-
for img in generated_images:
|
75 |
-
img.show()
|
76 |
-
"""
|
|
|
1 |
import torch
|
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
+
import pickle
|
5 |
+
from torchvision import transforms
|
6 |
from tqdm import tqdm
|
7 |
+
|
8 |
+
# Load the fine-tuned model
|
9 |
+
def load_model(model_path='fine_tuned_stylegan.pth'):
|
10 |
+
with open('ffhq.pkl', 'rb') as f:
|
11 |
+
data = pickle.load(f)
|
12 |
+
G = data['G_ema']
|
13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
+
G = G.to(device)
|
15 |
+
|
16 |
+
# Load the fine-tuned weights
|
17 |
+
G.load_state_dict(torch.load(model_path))
|
18 |
+
G.eval()
|
19 |
+
|
20 |
+
return G
|
21 |
+
|
22 |
+
G = load_model('fine_tuned_stylegan.pth')
|
23 |
+
|
24 |
def optimize_latent_vector(G, target_image, num_iterations=1000):
|
25 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
target_image = transforms.Resize((G.img_resolution, G.img_resolution))(target_image)
|
|
|
47 |
def generate_from_upload(uploaded_image):
|
48 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
|
|
|
50 |
optimized_z = optimize_latent_vector(G, uploaded_image)
|
51 |
|
|
|
52 |
num_variations = 4
|
53 |
variation_strength = 0.1
|
54 |
varied_z = optimized_z + torch.randn((num_variations, G.z_dim), device=device) * variation_strength
|
55 |
|
|
|
56 |
with torch.no_grad():
|
57 |
imgs = G(varied_z, c=None, truncation_psi=0.7, noise_mode='const')
|
58 |
|
59 |
imgs = (imgs * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
60 |
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
|
61 |
|
|
|
62 |
generated_images = [Image.fromarray(img) for img in imgs]
|
63 |
|
|
|
64 |
return generated_images[0], generated_images[1], generated_images[2], generated_images[3]
|
65 |
|
66 |
# Create the Gradio interface
|
|
|
73 |
|
74 |
# Launch the Gradio interface
|
75 |
iface.launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|