eder0782 commited on
Commit
e5cbbd6
·
verified ·
1 Parent(s): e450df1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -0
app.py CHANGED
@@ -7,6 +7,7 @@ from diffusers import DiffusionPipeline
7
  import io
8
  import base64
9
  from PIL import Image
 
10
 
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -40,6 +41,11 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
40
  # Retornar JSON com Base64 e seed
41
  return {"image_base64": f"data:image/png;base64,{img_str}", "seed": seed}
42
 
 
 
 
 
 
43
  examples = [
44
  "a tiny astronaut hatching from an egg on the moon",
45
  "a cat holding a sign that says hello world",
@@ -119,6 +125,7 @@ with gr.Blocks(css=css) as demo:
119
  output = infer(prompt, seed, randomize_seed, width, height, num_inference_steps)
120
  return output["image_base64"], output["seed"]
121
 
 
122
  gr.on(
123
  triggers=[run_button.click, prompt.submit],
124
  fn=format_output,
@@ -126,4 +133,7 @@ with gr.Blocks(css=css) as demo:
126
  outputs=[result, seed_output]
127
  )
128
 
 
 
 
129
  demo.launch()
 
7
  import io
8
  import base64
9
  from PIL import Image
10
+ import json
11
 
12
  dtype = torch.bfloat16
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
41
  # Retornar JSON com Base64 e seed
42
  return {"image_base64": f"data:image/png;base64,{img_str}", "seed": seed}
43
 
44
+ # Função para a API personalizada
45
+ def api_infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
46
+ result = infer(prompt, seed, randomize_seed, width, height, num_inference_steps)
47
+ return result # Retorna diretamente o JSON
48
+
49
  examples = [
50
  "a tiny astronaut hatching from an egg on the moon",
51
  "a cat holding a sign that says hello world",
 
125
  output = infer(prompt, seed, randomize_seed, width, height, num_inference_steps)
126
  return output["image_base64"], output["seed"]
127
 
128
+ # Interface Gradio
129
  gr.on(
130
  triggers=[run_button.click, prompt.submit],
131
  fn=format_output,
 
133
  outputs=[result, seed_output]
134
  )
135
 
136
+ # Endpoint personalizado para a API
137
+ demo.queue(api_name="infer_api").launch()
138
+
139
  demo.launch()