File size: 93,956 Bytes
7def60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
// llama.cpp gRPC C++ backend server
//
// Ettore Di Giacinto <[email protected]> and llama.cpp authors
//
// This is a gRPC server for llama.cpp compatible with the LocalAI proto
// Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP (https://github.com/ggerganov/llama.cpp/tree/master/examples/server), 
// but modified to work with gRPC
//

#include <iostream>
#include <memory>
#include <string>
#include <getopt.h>
#include "clip.h"
#include "llava.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
#include "llama.h"
#include "grammar-parser.h"
#include "backend.pb.h"
#include "backend.grpc.pb.h"
#include "utils.hpp"

// include std::regex
#include <cstddef>
#include <thread>
#include <mutex>
#include <chrono>
#include <regex>
#include <condition_variable>
#include <grpcpp/ext/proto_server_reflection_plugin.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
#include <atomic>
#include <signal.h>

using grpc::Server;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::Status;


using backend::HealthMessage;


///// LLAMA.CPP server code below

using json = nlohmann::json;

struct server_params
{
    std::string hostname = "127.0.0.1";
    std::vector<std::string> api_keys;
    std::string public_path = "examples/server/public";
    std::string chat_template = "";
    int32_t port = 8080;
    int32_t read_timeout = 600;
    int32_t write_timeout = 600;
    bool slots_endpoint = true;
    bool metrics_endpoint = false;
};

bool server_verbose = false;
bool server_log_json = true;

static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
    {
    }
    return i;
}

enum stop_type
{
    STOP_FULL,
    STOP_PARTIAL,
};

static bool ends_with(const std::string &str, const std::string &suffix)
{
    return str.size() >= suffix.size() &&
           0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}

static size_t find_partial_stop_string(const std::string &stop,
                                       const std::string &text)
{
    if (!text.empty() && !stop.empty())
    {
        const char text_last_char = text.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
        {
            if (stop[char_index] == text_last_char)
            {
                const std::string current_partial = stop.substr(0, char_index + 1);
                if (ends_with(text, current_partial))
                {
                    return text.size() - char_index - 1;
                }
            }
        }
    }
    return std::string::npos;
}

// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
    std::string ret;
    for (; begin != end; ++begin)
    {
        ret += llama_token_to_piece(ctx, *begin);
    }
    return ret;
}

// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
    std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
    // if the size is 1 and first bit is 1, meaning it's a partial character
    //   (size > 1 meaning it's already a known token)
    if (out.size() == 1 && (out[0] & 0x80) == 0x80)
    {
        std::stringstream ss;
        ss << std::hex << (out[0] & 0xff);
        std::string res(ss.str());
        out = "byte: \\x" + res;
    }
    return out;
}

// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
    json out = json::array();
    for (const auto &prob : probs)
    {
        json probs_for_token = json::array();
        for (const auto &p : prob.probs)
        {
            std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
            probs_for_token.push_back(json
            {
                {"tok_str", tok_str},
                {"prob",    p.prob},
            });
        }
        std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
        out.push_back(json{
            {"content", tok_str},
            {"probs",   probs_for_token},
        });
    }
    return out;
}

struct llama_client_slot
{
    int id;
    int task_id = -1;

    struct slot_params params;

    slot_state state = IDLE;
    slot_command command = NONE;

    // used to determine the slot that has been used the longest
    int64_t t_last_used = -1;

    // generation props
    int32_t n_ctx       = 0;  // context size per slot
    int32_t n_past      = 0;
    int32_t n_decoded   = 0;
    int32_t n_remaining = -1;
    int32_t i_batch     = -1;
    int32_t n_predict   = -1;

    int32_t num_prompt_tokens           = 0;
    int32_t num_prompt_tokens_processed = 0;

    json prompt;
    std::string generated_text;
    llama_token sampled;
    std::vector<llama_token> cache_tokens;
    std::vector<completion_token_output> generated_token_probs;

    bool infill = false;
    bool embedding = false;
    bool has_next_token = true;
    bool truncated = false;
    bool stopped_eos = false;
    bool stopped_word = false;
    bool stopped_limit = false;

    bool oaicompat = false;
    std::string oaicompat_model;

    std::string stopping_word;

    // sampling
    struct llama_sampling_params sparams;
    llama_sampling_context *ctx_sampling = nullptr;

    int32_t ga_i = 0;   // group-attention state
    int32_t ga_n = 1;   // group-attention factor
    int32_t ga_w = 512; // group-attention width

    int32_t n_past_se = 0; // self-extend

    // multimodal
    std::vector<slot_image> images;

    // stats
    size_t sent_count = 0;
    size_t sent_token_probs_index = 0;

    int64_t t_start_process_prompt;
    int64_t t_start_genereration;

    double t_prompt_processing; // ms
    double t_token_generation; // ms

    // multitasks
    int multitask_id = -1;

    void reset() {
        num_prompt_tokens      = 0;
        generated_text         = "";
        truncated              = false;
        stopped_eos            = false;
        stopped_word           = false;
        stopped_limit          = false;
        stopping_word          = "";
        n_past                 = 0;
        sent_count             = 0;
        sent_token_probs_index = 0;
        infill                 = false;
        ga_i                   = 0;
        n_past_se              = 0;

        generated_token_probs.clear();

        for (slot_image & img : images)
        {
            free(img.image_embedding);
            if (img.img_data) {
                clip_image_u8_free(img.img_data);
            }
            img.prefix_prompt = "";
        }

        images.clear();
    }

    bool has_budget(gpt_params &global_params) {
        if (params.n_predict == -1 && global_params.n_predict == -1)
        {
            return true; // limitless
        }

        n_remaining = -1;

        if (params.n_predict != -1)
        {
            n_remaining = params.n_predict - n_decoded;
        }
        else if (global_params.n_predict != -1)
        {
            n_remaining = global_params.n_predict - n_decoded;
        }

        return n_remaining > 0; // no budget
    }

    bool available() const {
        return state == IDLE && command == NONE;
    }

    bool is_processing() const {
        return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
    }

    void add_token_string(const completion_token_output &token) {
        if (command == RELEASE)
        {
            return;
        }
        cache_tokens.push_back(token.tok);
        generated_token_probs.push_back(token);
    }

    void release() {
        if (state == PROCESSING)
        {
            t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
            command = RELEASE;
        }
    }

    json get_formated_timings() {
        return json
        {
            {"prompt_n",               num_prompt_tokens_processed},
            {"prompt_ms",              t_prompt_processing},
            {"prompt_per_token_ms",    t_prompt_processing / num_prompt_tokens_processed},
            {"prompt_per_second",      1e3 / t_prompt_processing * num_prompt_tokens_processed},

            {"predicted_n",            n_decoded},
            {"predicted_ms",           t_token_generation},
            {"predicted_per_token_ms", t_token_generation / n_decoded},
            {"predicted_per_second",   1e3 / t_token_generation * n_decoded},
        };
    }

    void print_timings() const {
       char buffer[512];
        double t_token = t_prompt_processing / num_prompt_tokens_processed;
        double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
        sprintf(buffer, "prompt eval time     = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
                t_prompt_processing, num_prompt_tokens_processed,
                t_token, n_tokens_second);
        LOG_INFO(buffer, {
            {"slot_id",                     id},
            {"task_id",                     task_id},
            {"t_prompt_processing",         t_prompt_processing},
            {"num_prompt_tokens_processed", num_prompt_tokens_processed},
            {"t_token",                     t_token},
            {"n_tokens_second",             n_tokens_second},
        });

        t_token = t_token_generation / n_decoded;
        n_tokens_second = 1e3 / t_token_generation * n_decoded;
        sprintf(buffer, "generation eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)",
                t_token_generation, n_decoded,
                t_token, n_tokens_second);
        LOG_INFO(buffer, {
            {"slot_id",            id},
            {"task_id",            task_id},
            {"t_token_generation", t_token_generation},
            {"n_decoded",          n_decoded},
            {"t_token",            t_token},
            {"n_tokens_second",    n_tokens_second},
        });

        sprintf(buffer, "          total time = %10.2f ms", t_prompt_processing + t_token_generation);
        LOG_INFO(buffer, {
            {"slot_id",             id},
            {"task_id",             task_id},
            {"t_prompt_processing", t_prompt_processing},
            {"t_token_generation",  t_token_generation},
            {"t_total",             t_prompt_processing + t_token_generation},
        });
    }
};

struct llama_metrics {
    uint64_t n_prompt_tokens_processed_total = 0;
    uint64_t n_tokens_predicted_total        = 0;

    uint64_t n_prompt_tokens_processed = 0;
    uint64_t t_prompt_processing       = 0;

    uint64_t n_tokens_predicted       = 0;
    uint64_t t_tokens_generation      = 0;


    void on_prompt_eval(const llama_client_slot &slot) {
        n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;

        n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
        t_prompt_processing       += slot.t_prompt_processing;
    }

    void on_prediction(const llama_client_slot &slot) {
        n_tokens_predicted_total += slot.n_decoded;

        n_tokens_predicted  += slot.n_decoded;
        t_tokens_generation += slot.t_token_generation;
    }

    void reset_bucket() {
        n_prompt_tokens_processed = 0;
        t_prompt_processing       = 0;
        n_tokens_predicted        = 0;
        t_tokens_generation       = 0;
    }
};

struct llama_server_context
{
    llama_model *model = nullptr;
    llama_context *ctx = nullptr;

    clip_ctx *clp_ctx = nullptr;

    gpt_params params;

    llama_batch batch;

    bool multimodal         = false;
    bool clean_kv_cache     = true;
    bool all_slots_are_idle = false;
    bool add_bos_token      = true;

    int32_t n_ctx;  // total context for all clients / slots

    // system prompt
    bool system_need_update = false;

    std::string              system_prompt;
    std::vector<llama_token> system_tokens;

    std::string name_user;      // this should be the antiprompt
    std::string name_assistant;

    // slots / clients
    std::vector<llama_client_slot> slots;
    json default_generation_settings_for_props;

    llama_server_queue queue_tasks;
    llama_server_response queue_results;

    llama_metrics metrics;

    ~llama_server_context()
    {
        if (ctx)
        {
            llama_free(ctx);
            ctx = nullptr;
        }
        if (model)
        {
            llama_free_model(model);
            model = nullptr;
        }
    }

    bool load_model(const gpt_params &params_)
    {
        params = params_;
        if (!params.mmproj.empty()) {
            multimodal = true;
            LOG_INFO("Multi Modal Mode Enabled", {});
            clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
            if(clp_ctx == nullptr) {
                LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
                return false;
            }

            if (params.n_ctx < 2048) { // request larger context for the image embedding
                params.n_ctx = 2048;
            }
        }

        llama_init_result llama_init = llama_init_from_gpt_params(params);
        model = llama_init.model;
        ctx = llama_init.context;
        if (model == nullptr)
        {
            LOG_ERROR("unable to load model", {{"model", params.model}});
            return false;
        }

        if (multimodal) {
            const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
            const int n_embd_llm  = llama_n_embd(model);
            if (n_embd_clip != n_embd_llm) {
                LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
                llama_free(ctx);
                llama_free_model(model);
                return false;
            }
        }

        n_ctx = llama_n_ctx(ctx);

        add_bos_token = llama_should_add_bos_token(model);

        return true;
    }

    void validate_model_chat_template(server_params & sparams) {
        llama_chat_message chat[] = {{"user", "test"}};
        std::vector<char> buf(1);
        int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
        if (res < 0) {
            LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
            sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
        }
    }

    void initialize() {
        // create slots
        all_slots_are_idle = true;

        const int32_t n_ctx_slot = n_ctx / params.n_parallel;

        LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
        for (int i = 0; i < params.n_parallel; i++)
        {
            llama_client_slot slot;

            slot.id = i;
            slot.n_ctx = n_ctx_slot;
            slot.n_predict = params.n_predict;

            LOG_INFO("new slot", {
                {"slot_id",    slot.id},
                {"n_ctx_slot", slot.n_ctx}
            });

            const int ga_n = params.grp_attn_n;
            const int ga_w = params.grp_attn_w;

            if (ga_n != 1) {
                GGML_ASSERT(ga_n > 0                    && "ga_n must be positive");                     // NOLINT
                GGML_ASSERT(ga_w % ga_n == 0            && "ga_w must be a multiple of ga_n");     // NOLINT
                //GGML_ASSERT(n_ctx_train % ga_w == 0     && "n_ctx_train must be a multiple of ga_w");    // NOLINT
                //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT

                LOG_INFO("slot self-extend", {
                    {"slot_id",   slot.id},
                    {"ga_n",      ga_n},
                    {"ga_w",      ga_w}
                });
            }

            slot.ga_i = 0;
            slot.ga_n = ga_n;
            slot.ga_w = ga_w;

            slot.reset();

            slots.push_back(slot);
        }

        default_generation_settings_for_props = get_formated_generation(slots.front());
        default_generation_settings_for_props["seed"] = -1;

        batch = llama_batch_init(n_ctx, 0, params.n_parallel);
    }

    std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
    {
        // TODO: currently, we tokenize using special tokens by default
        //       this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
        //       but it's better compared to completely ignoring ChatML and other chat templates
        const bool TMP_FORCE_SPECIAL = true;

        // If `add_bos` is true, we only add BOS, when json_prompt is a string,
        // or the first element of the json_prompt array is a string.
        std::vector<llama_token> prompt_tokens;

        if (json_prompt.is_array())
        {
            bool first = true;
            for (const auto& p : json_prompt)
            {
                if (p.is_string())
                {
                    auto s = p.template get<std::string>();
                    std::vector<llama_token> p;
                    if (first)
                    {
                        p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
                        first = false;
                    }
                    else
                    {
                        p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
                    }
                    prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
                }
                else
                {
                    if (first)
                    {
                        first = false;
                    }
                    prompt_tokens.push_back(p.template get<llama_token>());
                }
            }
        }
        else
        {
            auto s = json_prompt.template get<std::string>();
            prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
        }

        return prompt_tokens;
    }

    llama_client_slot* get_slot(int id) {
        int64_t t_last = ggml_time_us();
        llama_client_slot *last_used = nullptr;

        for (llama_client_slot & slot : slots)
        {
            if (slot.id == id && slot.available())
            {
                return &slot;
            }

            if (slot.available() && slot.t_last_used < t_last)
            {
                last_used = &slot;
                t_last = slot.t_last_used;
            }
        }

        return last_used;
    }

    bool launch_slot_with_data(llama_client_slot* &slot, json data) {
        slot_params default_params;
        llama_sampling_params default_sparams;
 
        slot->params.stream             = json_value(data, "stream",            false);
        slot->params.cache_prompt       = json_value(data, "cache_prompt",      false);
        slot->params.n_predict          = json_value(data, "n_predict",         default_params.n_predict);
        slot->sparams.top_k             = json_value(data, "top_k",             default_sparams.top_k);
        slot->sparams.top_p             = json_value(data, "top_p",             default_sparams.top_p);
        slot->sparams.min_p             = json_value(data, "min_p",             default_sparams.min_p);
        slot->sparams.tfs_z             = json_value(data, "tfs_z",             default_sparams.tfs_z);
        slot->sparams.typical_p         = json_value(data, "typical_p",         default_sparams.typical_p);
        slot->sparams.temp              = json_value(data, "temperature",       default_sparams.temp);
        slot->sparams.dynatemp_range    = json_value(data, "dynatemp_range",    default_sparams.dynatemp_range);
        slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
        slot->sparams.penalty_last_n    = json_value(data, "repeat_last_n",     default_sparams.penalty_last_n);
        slot->sparams.penalty_repeat    = json_value(data, "repeat_penalty",    default_sparams.penalty_repeat);
        slot->sparams.penalty_freq      = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
        slot->sparams.penalty_present   = json_value(data, "presence_penalty",  default_sparams.penalty_present);
        slot->sparams.mirostat          = json_value(data, "mirostat",          default_sparams.mirostat);
        slot->sparams.mirostat_tau      = json_value(data, "mirostat_tau",      default_sparams.mirostat_tau);
        slot->sparams.mirostat_eta      = json_value(data, "mirostat_eta",      default_sparams.mirostat_eta);
        slot->sparams.penalize_nl       = json_value(data, "penalize_nl",       default_sparams.penalize_nl);
        slot->params.n_keep             = json_value(data, "n_keep",            slot->params.n_keep);
        slot->params.seed               = json_value(data, "seed",              default_params.seed);
        slot->sparams.grammar           = json_value(data, "grammar",           default_sparams.grammar);
        slot->sparams.n_probs           = json_value(data, "n_probs",           default_sparams.n_probs);
        slot->sparams.min_keep          = json_value(data, "min_keep",          default_sparams.min_keep);

        if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
            // Might be better to reject the request with a 400 ?
            LOG_WARNING("Max tokens to predict exceeds server configuration", {
                {"params.n_predict", slot->params.n_predict},
                {"slot.n_predict", slot->n_predict},
            });
            slot->params.n_predict = slot->n_predict;
        }

        // infill
        if (data.count("input_prefix") != 0)
        {
            slot->params.input_prefix = data["input_prefix"];
        }
        else
        {
            slot->params.input_prefix = "";
        }

        if (data.count("input_suffix") != 0)
        {
            slot->params.input_suffix = data["input_suffix"];
        }
        else
        {
            slot->params.input_suffix = "";
        }

        if (data.count("prompt") != 0)
        {
            slot->prompt = data["prompt"];
        }
        else
        {
            slot->prompt = "";
        }

        slot->sparams.penalty_prompt_tokens.clear();
        slot->sparams.use_penalty_prompt_tokens = false;
        const auto &penalty_prompt = data.find("penalty_prompt");
        if (penalty_prompt != data.end())
        {
            if (penalty_prompt->is_string())
            {
                const auto penalty_prompt_string = penalty_prompt->get<std::string>();
                auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
                slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
                if (slot->params.n_predict > 0)
                {
                    slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
                }
                slot->sparams.use_penalty_prompt_tokens = true;
            }
            else if (penalty_prompt->is_array())
            {
                const auto n_tokens = penalty_prompt->size();
                slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
                const int n_vocab = llama_n_vocab(model);
                for (const auto &penalty_token : *penalty_prompt)
                {
                    if (penalty_token.is_number_integer())
                    {
                        const auto tok = penalty_token.get<llama_token>();
                        if (tok >= 0 && tok < n_vocab)
                        {
                            slot->sparams.penalty_prompt_tokens.push_back(tok);
                        }
                    }
                }
                slot->sparams.use_penalty_prompt_tokens = true;
            }
        }

        slot->sparams.logit_bias.clear();

        if (json_value(data, "ignore_eos", false))
        {
            slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
        }

        const auto &logit_bias = data.find("logit_bias");
        if (logit_bias != data.end() && logit_bias->is_array())
        {
            const int n_vocab = llama_n_vocab(model);
            for (const auto &el : *logit_bias)
            {
                if (el.is_array() && el.size() == 2)
                {
                    float bias;
                    if (el[1].is_number())
                    {
                        bias = el[1].get<float>();
                    }
                    else if (el[1].is_boolean() && !el[1].get<bool>())
                    {
                        bias = -INFINITY;
                    }
                    else
                    {
                        continue;
                    }

                    if (el[0].is_number_integer())
                    {
                        llama_token tok = el[0].get<llama_token>();
                        if (tok >= 0 && tok < n_vocab)
                        {
                            slot->sparams.logit_bias[tok] = bias;
                        }
                    }
                    else if (el[0].is_string())
                    {
                        auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
                        for (auto tok : toks)
                        {
                            slot->sparams.logit_bias[tok] = bias;
                        }
                    }
                }
            }
        }

        slot->params.antiprompt.clear();

        const auto &stop = data.find("stop");
        if (stop != data.end() && stop->is_array())
        {
            for (const auto &word : *stop)
            {
                if (!word.empty())
                {
                    slot->params.antiprompt.push_back(word);
                }
            }
        }

        const auto &samplers_sequence = data.find("samplers");
        if (samplers_sequence != data.end() && samplers_sequence->is_array())
        {
            std::vector<std::string> sampler_names;
            for (const auto &sampler_name : *samplers_sequence)
            {
                if (sampler_name.is_string())
                {
                    sampler_names.emplace_back(sampler_name);
                }
            }
            slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
        }
        else
        {
            slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
        }

        if (multimodal)
        {
            const auto &images_data = data.find("image_data");
            if (images_data != data.end() && images_data->is_array())
            {
                for (const auto &img : *images_data)
                {
                    const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());

                    slot_image img_sl;
                    img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
                    img_sl.img_data = clip_image_u8_init();
                    if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
                    {
                        LOG_ERROR("failed to load image", {
                            {"slot_id",   slot->id},
                            {"img_sl_id", img_sl.id}
                        });
                        return false;
                    }
                    LOG_VERBOSE("image loaded", {
                        {"slot_id",   slot->id},
                        {"img_sl_id", img_sl.id}
                    });
                    img_sl.request_encode_image = true;
                    slot->images.push_back(img_sl);
                }
                // process prompt
                // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
                if (slot->images.size() > 0 && !slot->prompt.is_array())
                {
                    std::string prompt = slot->prompt.get<std::string>();
                    size_t pos = 0, begin_prefix = 0;
                    std::string pattern = "[img-";
                    while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
                        size_t end_prefix = pos;
                        pos += pattern.length();
                        size_t end_pos = prompt.find(']', pos);
                        if (end_pos != std::string::npos)
                        {
                            std::string image_id = prompt.substr(pos, end_pos - pos);
                            try
                            {
                                int img_id = std::stoi(image_id);
                                bool found = false;
                                for (slot_image &img : slot->images)
                                {
                                    if (img.id == img_id) {
                                        found = true;
                                        img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
                                        begin_prefix = end_pos + 1;
                                        break;
                                    }
                                }
                                if (!found) {
                                    LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
                                    slot->images.clear();
                                    return false;
                                }
                            } catch (const std::invalid_argument& e) {
                                LOG_TEE("Invalid image number id in prompt\n");
                                slot->images.clear();
                                return false;
                            }
                        }
                    }
                    slot->prompt = "";
                    slot->params.input_suffix = prompt.substr(begin_prefix);
                    slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
                }
            }
        }

        if (slot->ctx_sampling != nullptr)
        {
            llama_sampling_free(slot->ctx_sampling);
        }
        slot->ctx_sampling = llama_sampling_init(slot->sparams);
        llama_set_rng_seed(ctx, slot->params.seed);
        slot->command = LOAD_PROMPT;

        all_slots_are_idle = false;

        LOG_INFO("slot is processing task", {
            {"slot_id", slot->id},
            {"task_id", slot->task_id},
        });

        LOG_TEE("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());

        return true;
    }

    void kv_cache_clear() {
        // clear the entire KV cache
        llama_kv_cache_clear(ctx);
        clean_kv_cache = false;
    }

    void update_system_prompt() {
        kv_cache_clear();
        system_tokens.clear();

        if (!system_prompt.empty()) {
            system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);

            llama_batch_clear(batch);

            for (int i = 0; i < (int)system_tokens.size(); ++i)
            {
                llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
            }

            for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
            {
                const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
                llama_batch batch_view = {
                    n_tokens,
                    batch.token    + i,
                    nullptr,
                    batch.pos      + i,
                    batch.n_seq_id + i,
                    batch.seq_id   + i,
                    batch.logits   + i,
                    0, 0, 0, // unused
                };
                if (llama_decode(ctx, batch_view) != 0)
                {
                    LOG_TEE("%s: llama_decode() failed\n", __func__);
                    return;
                }
            }

            // assign the system KV cache to all parallel sequences
            for (int32_t i = 1; i < params.n_parallel; ++i)
            {
                llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
            }
        }

        LOG_TEE("system prompt updated\n");
        system_need_update = false;
    }

    void notify_system_prompt_changed() {
        // release all slots
        for (llama_client_slot &slot : slots)
        {
            slot.release();
        }

        system_need_update = true;
    }

    void process_system_prompt_data(const json &sys_props) {
        system_prompt  = sys_props.value("prompt", "");
        name_user      = sys_props.value("anti_prompt", "");
        name_assistant = sys_props.value("assistant_name", "");


        notify_system_prompt_changed();
    }

    static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
                                        const stop_type type, llama_client_slot &slot)
    {
        size_t stop_pos = std::string::npos;

        for (const std::string &word : slot.params.antiprompt)
        {
            size_t pos;
            if (type == STOP_FULL)
            {
                const size_t tmp = word.size() + last_token_size;
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
                pos = text.find(word, from_pos);
            }
            else
            {
                pos = find_partial_stop_string(word, text);
            }
            if (pos != std::string::npos &&
                (stop_pos == std::string::npos || pos < stop_pos))
            {
                if (type == STOP_FULL)
                {
                    slot.stopped_word = true;
                    slot.stopping_word = word;
                    slot.has_next_token = false;
                }
                stop_pos = pos;
            }
        }

        return stop_pos;
    }

    bool process_token(completion_token_output &result, llama_client_slot &slot) {
        // remember which tokens were sampled - used for repetition penalties during sampling
        const std::string token_str = llama_token_to_piece(ctx, result.tok);
        slot.sampled = result.tok;

        // search stop word and delete it
        slot.generated_text += token_str;
        slot.has_next_token = true;

        if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
        {
            // we can change penalty_prompt_tokens because it is always created from scratch each request
            slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
        }

        // check if there is incomplete UTF-8 character at the end
        bool incomplete = false;
        for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
        {
            unsigned char c = slot.generated_text[slot.generated_text.size() - i];
            if ((c & 0xC0) == 0x80)
            {
                // continuation byte: 10xxxxxx
                continue;
            }
            if ((c & 0xE0) == 0xC0)
            {
                // 2-byte character: 110xxxxx ...
                incomplete = i < 2;
            }
            else if ((c & 0xF0) == 0xE0)
            {
                // 3-byte character: 1110xxxx ...
                incomplete = i < 3;
            }
            else if ((c & 0xF8) == 0xF0)
            {
                // 4-byte character: 11110xxx ...
                incomplete = i < 4;
            }
            // else 1-byte character or invalid byte
            break;
        }

        if (!incomplete)
        {
            size_t pos = std::min(slot.sent_count, slot.generated_text.size());
            const std::string str_test = slot.generated_text.substr(pos);
            bool is_stop_full = false;
            size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
            if (stop_pos != std::string::npos)
            {
                is_stop_full = true;
                slot.generated_text.erase(
                    slot.generated_text.begin() + pos + stop_pos,
                    slot.generated_text.end());
                pos = std::min(slot.sent_count, slot.generated_text.size());
            }
            else
            {
                is_stop_full = false;
                stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
            }

            // check if there is any token to predict
            if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
            {
                // no send the stop word in the response
                result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
                slot.sent_count += result.text_to_send.size();
                // add the token to slot queue and cache
            }
            slot.add_token_string(result);
            if (slot.params.stream)
            {
                send_partial_response(slot, result);
            }
        }

        if (incomplete)
        {
            slot.has_next_token = true;
        }

        // check the limits
        if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
        {
            slot.stopped_limit = true;
            slot.has_next_token = false;
        }

        if (result.tok == llama_token_eos(model))
        {
            slot.stopped_eos = true;
            slot.has_next_token = false;
            LOG_VERBOSE("eos token found", {});
        }

        LOG_VERBOSE("next token", {
                                      {"token", result.tok},
                                      {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
                                      {"has_next_token", slot.has_next_token},
                                      {"n_remain", slot.n_remaining},
                                      {"num_tokens_predicted", slot.n_decoded},
                                      {"stopped_eos", slot.stopped_eos},
                                      {"stopped_word", slot.stopped_word},
                                      {"stopped_limit", slot.stopped_limit},
                                      {"stopping_word", slot.stopping_word},
                                  });

        return slot.has_next_token; // continue
    }

    bool process_images(llama_client_slot &slot) const
    {
        for (slot_image &img : slot.images)
        {
            if (!img.request_encode_image)
            {
                continue;
            }

            if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
                LOG_TEE("Error processing the given image");
                return false;
            }

            img.request_encode_image = false;
        }

        return slot.images.size() > 0;
    }

    void send_error(task_server& task, const std::string &error)
    {
        LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
        task_result res;
        res.id = task.id;
        res.multitask_id = task.multitask_id;
        res.stop = false;
        res.error = true;
        res.result_json = { { "content", error } };
        queue_results.send(res);
    }

    json get_formated_generation(llama_client_slot &slot)
    {
        const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
        const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
                                eos_bias->second < 0.0f && std::isinf(eos_bias->second);
        std::vector<std::string> samplers_sequence;
        for (const auto &sampler_type : slot.sparams.samplers_sequence)
        {
            samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
        }

        return json {
            {"n_ctx",             slot.n_ctx},
            {"n_predict",         slot.n_predict},
            {"model",             params.model_alias},
            {"seed",              slot.params.seed},
            {"temperature",       slot.sparams.temp},
            {"dynatemp_range",    slot.sparams.dynatemp_range},
            {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
            {"top_k",             slot.sparams.top_k},
            {"top_p",             slot.sparams.top_p},
            {"min_p",             slot.sparams.min_p},
            {"tfs_z",             slot.sparams.tfs_z},
            {"typical_p",         slot.sparams.typical_p},
            {"repeat_last_n",     slot.sparams.penalty_last_n},
            {"repeat_penalty",    slot.sparams.penalty_repeat},
            {"presence_penalty",  slot.sparams.penalty_present},
            {"frequency_penalty", slot.sparams.penalty_freq},
            {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
            {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
            {"mirostat",          slot.sparams.mirostat},
            {"mirostat_tau",      slot.sparams.mirostat_tau},
            {"mirostat_eta",      slot.sparams.mirostat_eta},
            {"penalize_nl",       slot.sparams.penalize_nl},
            {"stop",              slot.params.antiprompt},
            {"n_predict",         slot.params.n_predict},
            {"n_keep",            params.n_keep},
            {"ignore_eos",        ignore_eos},
            {"stream",            slot.params.stream},
            {"logit_bias",        slot.sparams.logit_bias},
            {"n_probs",           slot.sparams.n_probs},
            {"min_keep",          slot.sparams.min_keep},
            {"grammar",           slot.sparams.grammar},
            {"samplers",          samplers_sequence}
        };
    }

    void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
    {
        task_result res;
        res.id = slot.task_id;
        res.multitask_id = slot.multitask_id;
        res.error = false;
        res.stop = false;

        res.result_json = json
        {
            {"content",    tkn.text_to_send},
            {"stop",       false},
            {"slot_id",    slot.id},
            {"multimodal", multimodal}
        };

        if (slot.sparams.n_probs > 0)
        {
            std::vector<completion_token_output> probs_output = {};
            const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
            size_t probs_pos      = std::min(slot.sent_token_probs_index,                       slot.generated_token_probs.size());
            size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
            if (probs_pos < probs_stop_pos)
            {
                probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
            }
            slot.sent_token_probs_index = probs_stop_pos;
            res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
        }

        if (slot.oaicompat)
        {
            res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
            res.result_json["model"] = slot.oaicompat_model;
        }

        queue_results.send(res);
    }

    void send_final_response(llama_client_slot &slot)
    {
        task_result res;
        res.id = slot.task_id;
        res.multitask_id = slot.multitask_id;
        res.error = false;
        res.stop = true;

        res.result_json = json
        {
            {"content",             !slot.params.stream ? slot.generated_text : ""},
            {"slot_id",             slot.id},
            {"stop",                true},
            {"model",               params.model_alias},
            {"tokens_predicted",    slot.n_decoded},
            {"tokens_evaluated",    slot.num_prompt_tokens},
            {"generation_settings", get_formated_generation(slot)},
            {"prompt",              slot.prompt},
            {"truncated",           slot.truncated},
            {"stopped_eos",         slot.stopped_eos},
            {"stopped_word",        slot.stopped_word},
            {"stopped_limit",       slot.stopped_limit},
            {"stopping_word",       slot.stopping_word},
            {"tokens_cached",       slot.n_past},
            {"timings",             slot.get_formated_timings()}
        };

        if (slot.sparams.n_probs > 0)
        {
            std::vector<completion_token_output> probs = {};
            if (!slot.params.stream && slot.stopped_word)
            {
                const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
                probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
            }
            else
            {
                probs = std::vector<completion_token_output>(
                                    slot.generated_token_probs.begin(),
                                    slot.generated_token_probs.end());
            }
            res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
        }

        if (slot.oaicompat)
        {
            res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
            res.result_json["model"] = slot.oaicompat_model;
        }

        queue_results.send(res);
    }

    void send_embedding(llama_client_slot &slot)
    {
        task_result res;
        res.id = slot.task_id;
        res.multitask_id = slot.multitask_id;
        res.error = false;
        res.stop = true;

        const int n_embd = llama_n_embd(model);
        if (!params.embedding)
        {
            LOG_WARNING("embedding disabled", {
                                                  {"params.embedding", params.embedding},
                                              });
            res.result_json = json
            {
                {"embedding", std::vector<float>(n_embd, 0.0f)},
            };
        }
        else
        {
            const float *data = llama_get_embeddings(ctx);
            std::vector<float> embedding(data, data + n_embd);
            res.result_json = json
            {
                {"embedding", embedding },
            };
        }
        queue_results.send(res);
    }

    void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
    {
        task_server task;
        task.id = task_id;
        task.target_id = 0;
        task.data = std::move(data);
        task.infill_mode = infill;
        task.embedding_mode = embedding;
        task.type = TASK_TYPE_COMPLETION;
        task.multitask_id = multitask_id;

        // when a completion task's prompt array is not a singleton, we split it into multiple requests
        // otherwise, it's a single-prompt task, we actually queue it
        // if there's numbers in the prompt array it will be treated as an array of tokens
        if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
            bool numbers = false;
            for (const auto& e : task.data.at("prompt")) {
                if (e.is_number()) {
                    numbers = true;
                    break;
                }
            }

            // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
            // it will completely stall the server. I don't know where the bug for this is.
            //
            // if there are numbers, it needs to be treated like a single prompt,
            // queue_tasks handles a mix of strings and numbers just fine.
            if (numbers) {
                queue_tasks.post(task);
            } else {
                split_multiprompt_task(task_id, task);
            }
        } else {
            queue_tasks.post(task);
        }
    }

    // for multiple images processing
    bool ingest_images(llama_client_slot &slot, int n_batch)
    {
        int image_idx = 0;

        while (image_idx < (int) slot.images.size())
        {
            slot_image &img = slot.images[image_idx];

            // process prefix prompt
            for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
            {
                const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
                llama_batch batch_view = {
                    n_tokens,
                    batch.token    + i,
                    nullptr,
                    batch.pos      + i,
                    batch.n_seq_id + i,
                    batch.seq_id   + i,
                    batch.logits   + i,
                    0, 0, 0, // unused
                };
                if (llama_decode(ctx, batch_view))
                {
                    LOG_TEE("%s : failed to eval\n", __func__);
                    return false;
                }
            }

            // process image with llm
            for (int i = 0; i < img.image_tokens; i += n_batch)
            {
                int n_eval = img.image_tokens - i;
                if (n_eval > n_batch)
                {
                    n_eval = n_batch;
                }

                const int n_embd = llama_n_embd(model);
                llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
                if (llama_decode(ctx, batch_img))
                {
                    LOG_TEE("%s : failed to eval image\n", __func__);
                    return false;
                }
                slot.n_past += n_eval;
            }
            image_idx++;

            llama_batch_clear(batch);

            // append prefix of next image
            const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
                slot.params.input_suffix : // no more images, then process suffix prompt
                (json)(slot.images[image_idx].prefix_prompt);

            std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
            for (int i = 0; i < (int) append_tokens.size(); ++i)
            {
                llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
                slot.n_past += 1;
            }
        }

        return true;
    }

    void request_cancel(int task_id)
    {
        task_server task;
        task.type = TASK_TYPE_CANCEL;
        task.target_id = task_id;
        queue_tasks.post(task);
    }

    void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
    {
        int prompt_count = multiprompt_task.data.at("prompt").size();
        if (prompt_count <= 1) {
            send_error(multiprompt_task, "error while handling multiple prompts");
            return;
        }

        // generate all the ID for subtask
        std::vector<int> subtask_ids(prompt_count);
        for (int i = 0; i < prompt_count; i++)
        {
            subtask_ids[i] = queue_tasks.get_new_id();
        }

        // queue up the multitask so we can track its subtask progression
        queue_tasks.add_multitask(multitask_id, subtask_ids);

        // add subtasks
        for (int i = 0; i < prompt_count; i++)
        {
            json subtask_data = multiprompt_task.data;
            subtask_data["prompt"] = subtask_data["prompt"][i];

            // subtasks inherit everything else (infill mode, embedding mode, etc.)
            request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
        }
    }

    void process_single_task(task_server& task)
    {
        switch (task.type)
        {
            case TASK_TYPE_COMPLETION: {
                llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
                if (slot == nullptr)
                {
                    // if no slot is available, we defer this task for processing later
                    LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
                    queue_tasks.defer(task);
                    break;
                }

                if (task.data.contains("system_prompt"))
                {
                    if (!all_slots_are_idle) {
                        send_error(task, "system prompt can only be updated when all slots are idle");
                        break;
                    }
                    process_system_prompt_data(task.data["system_prompt"]);

                    // reset cache_tokens for all slots
                    for (llama_client_slot &slot : slots)
                    {
                        slot.cache_tokens.clear();
                        slot.n_past    = 0;
                        slot.n_past_se = 0;
                    }
                }

                slot->reset();

                slot->infill       = task.infill_mode;
                slot->embedding    = task.embedding_mode;
                slot->task_id      = task.id;
                slot->multitask_id = task.multitask_id;

                if (!launch_slot_with_data(slot, task.data))
                {
                    // send error result
                    send_error(task, "internal_error");
                    break;
                }
            } break;
            case TASK_TYPE_CANCEL: { // release slot linked with the task id
                for (auto & slot : slots)
                {
                    if (slot.task_id == task.target_id)
                    {
                        slot.release();
                        break;
                    }
                }
            } break;
            case TASK_TYPE_NEXT_RESPONSE: {
                // do nothing
            } break;
        }
    }

    void on_finish_multitask(task_multi& multitask)
    {
        // all subtasks done == multitask is done
        task_result result;
        result.id = multitask.id;
        result.stop = true;
        result.error = false;

        // collect json results into one json result
        std::vector<json> result_jsons;
        for (auto& subres : multitask.results)
        {
            result_jsons.push_back(subres.result_json);
            result.error = result.error && subres.error;
        }
        result.result_json = json{ { "results", result_jsons } };
        queue_results.send(result);
    }

    bool update_slots() {
        if (system_need_update)
        {
            LOG_INFO("updating system prompt", {});
            update_system_prompt();
        }

        llama_batch_clear(batch);

        if (all_slots_are_idle)
        {
            if (system_prompt.empty() && clean_kv_cache)
            {
                LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
                kv_cache_clear();
            }
            return true;
        }

        LOG_VERBOSE("posting NEXT_RESPONSE", {});
        task_server task;
        task.type = TASK_TYPE_NEXT_RESPONSE;
        task.target_id = -1;
        queue_tasks.post(task);

        for (llama_client_slot &slot : slots)
        {
            if (slot.ga_n == 1)
            {
                if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
                {
                    // START LOCALAI changes
                    // Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969)
                    // See: https://github.com/mudler/LocalAI/issues/1333
                    // Context is exhausted, release the slot
                    slot.release();
                    send_final_response(slot);
                    slot.cache_tokens.clear();
                    slot.n_past = 0;
                    slot.truncated = false;
                    slot.has_next_token = true;
                    LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());

                    continue;
                    // END LOCALAI changes
                }
            }
        }

        // decode any currently ongoing sequences
        LOG_VERBOSE("decoding ongoing sequences", {});
        for (auto & slot : slots)
        {
            // release the slot
            if (slot.command == RELEASE)
            {
                slot.state = IDLE;
                slot.command = NONE;
                slot.t_last_used = ggml_time_us();

                LOG_INFO("slot released", {
                    {"slot_id",         slot.id},
                    {"task_id",         slot.task_id},
                    {"n_ctx",           n_ctx},
                    {"n_past",          slot.n_past},
                    {"n_system_tokens", system_tokens.size()},
                    {"n_cache_tokens",  slot.cache_tokens.size()},
                    {"truncated",       slot.truncated}
                });
                queue_tasks.notify_slot_changed();

                continue;
            }

            if (slot.state == IDLE)
            {
                continue;
            }

            slot.i_batch = batch.n_tokens;

            const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;

            // TODO: we always have to take into account the "system_tokens"
            //       this is not great and needs to be improved somehow
            llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
            slot.n_past += 1;
        }

        // process in chunks of params.n_batch
        int32_t n_batch = params.n_batch;

        // assign workload to the slots
        if (params.cont_batching || batch.n_tokens == 0)
        {
            for (auto & slot : slots)
            {
                const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();

                // empty prompt passed -> release the slot and send empty response
                // note: infill mode allows empty prompt
                if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
                {
                    slot.release();
                    slot.print_timings();
                    send_final_response(slot);
                    continue;
                }

                // need process the prompt
                if (slot.state == IDLE && slot.command == LOAD_PROMPT)
                {
                    slot.state = PROCESSING;
                    slot.command = NONE;
                    std::vector<llama_token> prompt_tokens;
                    slot.t_start_process_prompt = ggml_time_us();
                    slot.t_start_genereration = 0;

                    if (slot.infill)
                    {
                        bool suff_rm_leading_spc = true;
                        if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
                        {
                            params.input_suffix.erase(0, 1);
                            suff_rm_leading_spc = false;
                        }
                        auto prefix_tokens = tokenize(slot.params.input_prefix, false);
                        auto suffix_tokens = tokenize(slot.params.input_suffix, false);

                        const int space_token = 29871; // TODO: this should not be hardcoded
                        if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
                            suffix_tokens.erase(suffix_tokens.begin());
                        }

                        prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
                        prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
                        prefix_tokens.insert(prefix_tokens.end(),   llama_token_suffix(model));
                        prefix_tokens.insert(prefix_tokens.end(),   suffix_tokens.begin(), suffix_tokens.end());
                        prefix_tokens.push_back(llama_token_middle(model));
                        prompt_tokens = prefix_tokens;
                    }
                    else
                    {
                        prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token);  // add BOS if there isn't system prompt
                    }

                    slot.num_prompt_tokens = prompt_tokens.size();

                    if (slot.params.n_keep < 0)
                    {
                        slot.params.n_keep = slot.num_prompt_tokens;
                    }
                    slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);

                    // if input prompt is too big, truncate it
                    if (slot.num_prompt_tokens >= slot.n_ctx)
                    {
                        const int n_left = slot.n_ctx - slot.params.n_keep;
                        const int n_block_size = n_left / 2;
                        const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;

                        std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
                        new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());

                        LOG_VERBOSE("input truncated", {
                            {"n_ctx",  slot.n_ctx},
                            {"n_keep", slot.params.n_keep},
                            {"n_left", n_left},
                            {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
                        });
                        slot.truncated = true;
                        prompt_tokens = new_tokens;

                        slot.num_prompt_tokens = prompt_tokens.size();
                        GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
                    }

                    if (!slot.params.cache_prompt)
                    {
                        llama_sampling_reset(slot.ctx_sampling);

                        slot.n_past = 0;
                        slot.n_past_se = 0;
                        slot.ga_i = 0;
                        slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
                    }
                    else
                    {
                        // push the prompt into the sampling context (do not apply grammar)
                        for (auto &token : prompt_tokens)
                        {
                            llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
                        }

                        slot.n_past = common_part(slot.cache_tokens, prompt_tokens);

                        // the last token of the cache is not in the KV cache until the next call to llama_decode
                        // (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
                        if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
                        {
                            slot.n_past -= 1;
                        }

                        slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;

                        if (slot.ga_n != 1)
                        {
                            int ga_i = 0;
                            int32_t ga_n = slot.ga_n;
                            int32_t ga_w = slot.ga_w;
                            int32_t slot_npast = 0;
                            for (int k = 0; k < slot.n_past; ++k)
                            {
                                while (slot_npast >= ga_i + ga_w) {
                                    const int bd = (ga_w/ga_n)*(ga_n - 1);
                                    slot_npast -= bd;
                                    ga_i += ga_w/ga_n;
                                }
                                slot_npast++;
                            }
                            slot.n_past_se = slot_npast;
                            slot.ga_i = ga_i;
                        }

                        LOG_INFO("slot progression", {
                            { "slot_id", slot.id },
                            { "task_id", slot.task_id },
                            { "n_past",  slot.n_past },
                            { "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
                        });
                    }

                    slot.cache_tokens = prompt_tokens;

                    if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
                    {
                        // we have to evaluate at least 1 token to generate logits.
                        LOG_INFO("we have to evaluate at least 1 token to generate logits", {
                            { "slot_id", slot.id },
                            { "task_id", slot.task_id }
                        });
                        slot.n_past--;
                        if (slot.ga_i > 0)
                        {
                            slot.n_past_se--;
                        }
                    }

                    int p0 = (int) system_tokens.size() + slot.n_past;
                    LOG_INFO("kv cache rm [p0, end)", {
                        { "slot_id", slot.id },
                        { "task_id", slot.task_id },
                        { "p0",      p0 }
                    });
                    llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);

                    LOG_VERBOSE("prompt ingested", {
                                                    {"n_past",  slot.n_past},
                                                    {"cached",  tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
                                                    {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
                                                });

                    const bool has_images = process_images(slot);

                    // process the prefix of first image
                    std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;

                    int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;

                    int32_t ga_i = slot.ga_i;
                    int32_t ga_n = slot.ga_n;
                    int32_t ga_w = slot.ga_w;

                    for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
                    {
                        if (slot.ga_n != 1)
                        {
                            while (slot_npast >= ga_i + ga_w) {
                                const int bd = (ga_w/ga_n)*(ga_n - 1);
                                slot_npast -= bd;
                                ga_i += ga_w/ga_n;
                            }
                        }
                        llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
                        slot_npast++;
                    }

                    if (has_images && !ingest_images(slot, n_batch))
                    {
                        LOG_ERROR("failed processing images", {
                            "slot_id", slot.id,
                            "task_id", slot.task_id,
                        });
                        // FIXME @phymbert: to be properly tested
                        //  early returning without changing the slot state will block the slot for ever
                        // no one at the moment is checking the return value
                        return false;
                    }

                    // extract the logits only for the last token
                    if (batch.n_tokens > 0)
                    {
                        batch.logits[batch.n_tokens - 1] = true;
                    }

                    slot.n_decoded = 0;
                    slot.i_batch   = batch.n_tokens - 1;
                }
            }
        }

        if (batch.n_tokens == 0)
        {
            all_slots_are_idle = true;
            return true;
        }

        for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
        {
            const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));

            for (auto & slot : slots)
            {
                if (slot.ga_n != 1)
                {
                    // context extension via Self-Extend
                    while (slot.n_past_se >= slot.ga_i + slot.ga_w)
                    {
                        const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
                        const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
                        const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;

                        LOG_TEE("\n");
                        LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
                        LOG_TEE("div:   [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
                        LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);

                        llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
                        llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
                        llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);

                        slot.n_past_se -= bd;

                        slot.ga_i += slot.ga_w / slot.ga_n;

                        LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
                    }
                    slot.n_past_se += n_tokens;
                }
            }

            llama_batch batch_view =
            {
                n_tokens,
                batch.token    + i,
                nullptr,
                batch.pos      + i,
                batch.n_seq_id + i,
                batch.seq_id   + i,
                batch.logits   + i,
                0, 0, 0, // unused
            };

            const int ret = llama_decode(ctx, batch_view);

            if (ret != 0)
            {
                if (n_batch == 1 || ret < 0)
                {
                    // if you get here, it means the KV cache is full - try increasing it via the context size
                    LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
                    return false;
                }

                LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);

                // retry with half the batch size to try to find a free slot in the KV cache
                n_batch /= 2;
                i -= n_batch;
                continue;
            }

            for (auto & slot : slots)
            {
                if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
                {
                    continue;
                }

                // prompt evaluated for embedding
                if (slot.embedding)
                {
                    send_embedding(slot);
                    slot.release();
                    slot.i_batch = -1;
                    continue;
                }

                completion_token_output result;
                const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);

                llama_sampling_accept(slot.ctx_sampling, ctx, id, true);

                slot.n_decoded += 1;
                if (slot.n_decoded == 1)
                {
                    slot.t_start_genereration = ggml_time_us();
                    slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
                    metrics.on_prompt_eval(slot);
                }

                llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
                result.tok = id;

                const int32_t n_probs = slot.sparams.n_probs;
                if (slot.sparams.temp <= 0 && n_probs > 0)
                {
                    // for llama_sample_token_greedy we need to sort candidates
                    llama_sample_softmax(ctx, &cur_p);
                }

                for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
                {
                    result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
                }

                if (!process_token(result, slot))
                {
                    slot.release();
                    slot.print_timings();
                    send_final_response(slot);
                    metrics.on_prediction(slot);
                }

                slot.i_batch = -1;
            }
        }

        LOG_VERBOSE("slots updated", {});
        return true;
    }

    void run_on_all_tasks_finished() {
        update_slots();
    }
};

/* llama.cpp completion api semantics */
static json format_partial_response(
    llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
    json res = json
    {
        {"content",    content },
        {"stop",       false},
        {"slot_id",    slot->id },
        {"multimodal", llama.multimodal }
    };

    if (slot->sparams.n_probs > 0)
    {
        res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
    }

    return res;
}

struct token_translator
{
    llama_context * ctx;
    std::string operator()(llama_token tok)                    const { return llama_token_to_piece(ctx, tok); }
    std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};

static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
{
    auto & gtps = slot->generated_token_probs;
    auto translator = token_translator{llama.ctx};
    auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
    const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
    if (slot->generated_text.capacity() < slot->generated_text.size() + len)
    {
        slot->generated_text.reserve(slot->generated_text.size() + len);
    }
    for (const completion_token_output & cto : gtps)
    {
        slot->generated_text += translator(cto);
    }
}

std::function<void(int)> shutdown_handler;
inline void signal_handler(int signal) { shutdown_handler(signal); }

/////////////////////////////////
////////////////////////////////
//////// LOCALAI code starts below here
/////////////////////////////////
////////////////////////////////

bool loaded_model; // TODO: add a mutex for this, but happens only once loading the model

// The class has a llama instance that is shared across all RPCs
llama_server_context llama;

static void start_llama_server() {
    // Wait for model to be loaded first
    while (!loaded_model) {
        std::this_thread::sleep_for(std::chrono::milliseconds(100));
    }

    llama.queue_tasks.on_new_task(std::bind(
        &llama_server_context::process_single_task, &llama, std::placeholders::_1));
    llama.queue_tasks.on_finish_multitask(std::bind(
        &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
    llama.queue_tasks.on_all_tasks_finished(std::bind(
        &llama_server_context::run_on_all_tasks_finished, &llama));
    llama.queue_results.on_multitask_update(std::bind(
        &llama_server_queue::update_multitask,
        &llama.queue_tasks,
        std::placeholders::_1,
        std::placeholders::_2,
        std::placeholders::_3
    ));
    llama.queue_tasks.start_loop();
}

json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama)
{
    
    // This is for example a slot data from the json data
    //     slot->params.stream           = json_value(data, "stream",            false);
    //     slot->params.cache_prompt     = json_value(data, "cache_prompt",      false);
    //     slot->params.n_predict        = json_value(data, "n_predict",         default_params.n_predict);
    //     slot->sparams.top_k           = json_value(data, "top_k",             default_sparams.top_k);
    //     slot->sparams.top_p           = json_value(data, "top_p",             default_sparams.top_p);
    //     slot->sparams.tfs_z           = json_value(data, "tfs_z",             default_sparams.tfs_z);
    //     slot->sparams.typical_p       = json_value(data, "typical_p",         default_sparams.typical_p);
    //     slot->sparams.temp            = json_value(data, "temperature",       default_sparams.temp);
    //     slot->sparams.penalty_last_n  = json_value(data, "repeat_last_n",     default_sparams.penalty_last_n);
    //     slot->sparams.penalty_repeat  = json_value(data, "repeat_penalty",    default_sparams.penalty_repeat);
    //     slot->sparams.penalty_freq    = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
    //     slot->sparams.penalty_present = json_value(data, "presence_penalty",  default_sparams.penalty_present);
    //     slot->sparams.mirostat        = json_value(data, "mirostat",          default_sparams.mirostat);
    //     slot->sparams.mirostat_tau    = json_value(data, "mirostat_tau",      default_sparams.mirostat_tau);
    //     slot->sparams.mirostat_eta    = json_value(data, "mirostat_eta",      default_sparams.mirostat_eta);
    //     slot->sparams.penalize_nl     = json_value(data, "penalize_nl",       default_sparams.penalize_nl);
    //     slot->params.n_keep           = json_value(data, "n_keep",            slot->params.n_keep);
    //     slot->params.seed             = json_value(data, "seed",              default_params.seed);
    //     slot->sparams.grammar         = json_value(data, "grammar",           default_sparams.grammar);
    //     slot->sparams.n_probs         = json_value(data, "n_probs",           default_sparams.n_probs);

    // Create now a json data from the prediction options instead
    //
    json data;
    data["stream"] = streaming;
    data["cache_prompt"] = predict->promptcacheall();
    data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens();
    data["top_k"] = predict->topk();
    data["top_p"] = predict->topp();
    data["tfs_z"] = predict->tailfreesamplingz();
    data["typical_p"] = predict->typicalp();
    data["temperature"] = predict->temperature();
    data["repeat_last_n"] = predict->repeat();
    data["repeat_penalty"] = predict->penalty();
    data["frequency_penalty"] = predict->frequencypenalty();
    data["presence_penalty"] = predict->presencepenalty();
    data["mirostat"] = predict->mirostat();
    data["mirostat_tau"] = predict->mirostattau();
    data["mirostat_eta"] = predict->mirostateta();
    data["penalize_nl"] = predict->penalizenl();
    data["n_keep"] = predict->nkeep();
    data["seed"] = predict->seed();
    data["grammar"] = predict->grammar();
    data["prompt"] = predict->prompt();
    data["ignore_eos"] = predict->ignoreeos();
    data["embeddings"] = predict->embeddings();

    // for each image in the request, add the image data
    //
    for (int i = 0; i < predict->images_size(); i++) {
        data["image_data"].push_back(json
            {
                {"id", i},
                {"data",    predict->images(i)},
            });
    }

    data["stop"] = predict->stopprompts();
    // data["n_probs"] = predict->nprobs();
    //TODO: images,

    return data;
}

// static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama)
// {
//     // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673
//     gpt_params default_params;

//     llama.stream = streaming;
//     llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
//     llama.params.sparams.top_k = predict->topk();
//     llama.params.sparams.top_p = predict->topp();
//     llama.params.sparams.tfs_z = predict->tailfreesamplingz();
//     llama.params.sparams.typical_p = predict->typicalp();
//     llama.params.sparams.penalty_last_n = predict->repeat();
//     llama.params.sparams.temp = predict->temperature();
//     llama.params.sparams.penalty_repeat = predict->penalty();
//     llama.params.sparams.penalty_present = predict->presencepenalty();
//     llama.params.sparams.penalty_freq = predict->frequencypenalty();
//     llama.params.sparams.mirostat = predict->mirostat();
//     llama.params.sparams.mirostat_tau = predict->mirostattau();
//     llama.params.sparams.mirostat_eta = predict->mirostateta();
//     llama.params.sparams.penalize_nl = predict->penalizenl();
//     llama.params.n_keep = predict->nkeep();
//     llama.params.seed = predict->seed();
//     llama.params.sparams.grammar = predict->grammar();
//     // llama.params.n_probs = predict->
//     llama.params.prompt = predict->prompt();

//     llama.params.sparams.logit_bias.clear();

//     if (predict->ignoreeos())
//     {
//         llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY;
//     }

//     // const auto &logit_bias = body.find("logit_bias");
//     // if (logit_bias != body.end() && logit_bias->is_array())
//     // {
//     //     const int n_vocab = llama_n_vocab(llama.model);
//     //     for (const auto &el : *logit_bias)
//     //     {
//     //         if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
//     //         {
//     //             llama_token tok = el[0].get<llama_token>();
//     //             if (tok >= 0 && tok < n_vocab)
//     //             {
//     //                 if (el[1].is_number())
//     //                 {
//     //                     llama.params.logit_bias[tok] = el[1].get<float>();
//     //                 }
//     //                 else if (el[1].is_boolean() && !el[1].get<bool>())
//     //                 {
//     //                     llama.params.logit_bias[tok] = -INFINITY;
//     //                 }
//     //             }
//     //         }
//     //     }
//     // }

//     llama.params.antiprompt.clear();
//     for (const std::string& stopPrompt : predict->stopprompts()) {
//     if (!stopPrompt.empty())
//             {
//                 llama.params.antiprompt.push_back(stopPrompt);
//             }
//     }
// }

static void params_parse(const backend::ModelOptions* request,
                                gpt_params & params) {
   
    // this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809

    params.model = request->modelfile();
    if (!request->mmproj().empty()) {
    // get the directory of modelfile
      std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\"));
      params.mmproj = model_dir + "/"+ request->mmproj();
    }
    //  params.model_alias ??
    params.model_alias =  request->modelfile();
    params.n_ctx = request->contextsize();
    //params.memory_f16 = request->f16memory();
    params.n_threads = request->threads();
    params.n_gpu_layers = request->ngpulayers();
    params.n_batch = request->nbatch();
    // Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
    //params.n_parallel = 1;
    const char *env_parallel = std::getenv("LLAMACPP_PARALLEL");
    if (env_parallel != NULL) {
        params.n_parallel = std::stoi(env_parallel);
        params.cont_batching = true;
    } else {
        params.n_parallel = 1;
    }

    const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS");
    if (llama_grpc_servers != NULL) {
        params.rpc_servers = std::string(llama_grpc_servers);
    }
    
    // TODO: Add yarn

    if (!request->tensorsplit().empty()) {
        std::string arg_next = request->tensorsplit();

        // split string by , and /
        const std::regex regex{ R"([,/]+)" };
        std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
        std::vector<std::string> split_arg{ it, {} };

        GGML_ASSERT(split_arg.size() <= llama_max_devices());

        for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
            if (i_device < split_arg.size()) {
                params.tensor_split[i_device] = std::stof(split_arg[i_device]);
            }
            else {
                params.tensor_split[i_device] = 0.0f;
            }
        }
    }

    if (!request->maingpu().empty()) {
        params.main_gpu = std::stoi(request->maingpu());
    }
    if (!request->loraadapter().empty() && !request->lorabase().empty()) {
     float scale_factor = 1.0f;
     if (request->lorascale() != 0.0f) {
        scale_factor = request->lorascale();
     }
     // get the directory of modelfile
     std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\"));
     params.lora_adapters.push_back({ model_dir + "/"+request->loraadapter(), scale_factor });
    }
    params.use_mlock = request->mlock();
    params.use_mmap = request->mmap();
    params.flash_attn = request->flashattention();
    params.no_kv_offload = request->nokvoffload();

    params.embedding = request->embeddings();

    if (request->ropescaling() == "none")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
    else if (request->ropescaling() == "yarn")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
    else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
    if ( request->yarnextfactor() != 0.0f ) {
        params.yarn_ext_factor = request->yarnextfactor();
    }
    if ( request->yarnattnfactor() != 0.0f ) {
        params.yarn_attn_factor = request->yarnattnfactor();
    }
    if ( request->yarnbetafast() != 0.0f ) {
        params.yarn_beta_fast = request->yarnbetafast();
    }
    if ( request->yarnbetaslow() != 0.0f ) {
        params.yarn_beta_slow = request->yarnbetaslow();
    }
    if ( request->ropefreqbase() != 0.0f ) {
        params.rope_freq_base = request->ropefreqbase();
    }
    if ( request->ropefreqscale() != 0.0f ) {
        params.rope_freq_scale = request->ropefreqscale();
    }
}


// GRPC Server start
class BackendServiceImpl final : public backend::Backend::Service {
public:
  grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) {
    // Implement Health RPC
    reply->set_message("OK");
    return Status::OK;
  }

  grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
    // Implement LoadModel RPC
    gpt_params params;
    params_parse(request, params);

    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model
    if (!llama.load_model(params))
    {
        result->set_message("Failed loading model");
        result->set_success(false);
        return Status::CANCELLED;
    }
    llama.initialize();
    result->set_message("Loading succeeded");
    result->set_success(true);
    loaded_model = true;
    return Status::OK;
  }
  grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override {
        json data = parse_options(true, request, llama);
        const int task_id = llama.queue_tasks.get_new_id();
        llama.queue_results.add_waiting_task_id(task_id);
        llama.request_completion(task_id, data, false, false, -1);
        while (true)
        {
            task_result result = llama.queue_results.recv(task_id);
            if (!result.error) {
                const std::string str =
                "data: " +
                result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
                "\n\n";
                LOG_VERBOSE("data stream", {
                    { "to_send", str }
                });

                backend::Reply reply;
                // print it
                std::string completion_text = result.result_json.value("content", "");

                reply.set_message(completion_text);
                int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
                reply.set_tokens(tokens_predicted);
                int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
                reply.set_prompt_tokens(tokens_evaluated);

                // Send the reply
                writer->Write(reply);

                if (result.stop) {
                    break;
                }
            } else {
                break;
            }
        }

        return grpc::Status::OK;
    }


    grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) {
        json data = parse_options(false, request, llama);
        const int task_id = llama.queue_tasks.get_new_id();
        llama.queue_results.add_waiting_task_id(task_id);
        llama.request_completion(task_id, data, false, false, -1);
        std::string completion_text;
        task_result result = llama.queue_results.recv(task_id);
        if (!result.error && result.stop) {
            completion_text = result.result_json.value("content", "");
            int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
            int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
            reply->set_prompt_tokens(tokens_evaluated);
            reply->set_tokens(tokens_predicted);
            reply->set_message(completion_text);
        }
        else
        {
            return grpc::Status::OK;
        }

        return grpc::Status::OK;
    }

    /// https://github.com/ggerganov/llama.cpp/blob/aa2341298924ac89778252015efcb792f2df1e20/examples/server/server.cpp#L2969
    grpc::Status Embedding(ServerContext* context, const backend::PredictOptions* request, backend::EmbeddingResult* embeddingResult) {
        json data = parse_options(false, request, llama);
        const int task_id = llama.queue_tasks.get_new_id();
        llama.queue_results.add_waiting_task_id(task_id);
        llama.request_completion(task_id, { {"prompt", data["embeddings"]}, { "n_predict", 0}, {"image_data", ""} }, false, true, -1);
        // get the result
        task_result result = llama.queue_results.recv(task_id);
        //std::cout << "Embedding result JSON" << result.result_json.dump() << std::endl;
        llama.queue_results.remove_waiting_task_id(task_id);
        if (!result.error && result.stop) {
            std::vector<float> embeddings = result.result_json.value("embedding", std::vector<float>());
            // loop the vector and set the embeddings results
            for (int i = 0; i < embeddings.size(); i++) {
                embeddingResult->add_embeddings(embeddings[i]);
            }
        }
        else
        {
            return grpc::Status::OK;
        }

        return grpc::Status::OK;
    }
};

void RunServer(const std::string& server_address) {
  BackendServiceImpl service;

  ServerBuilder builder;
  builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
  builder.RegisterService(&service);

  std::unique_ptr<Server> server(builder.BuildAndStart());
  std::cout << "Server listening on " << server_address << std::endl;
  server->Wait();
}

int main(int argc, char** argv) {
  std::string server_address("localhost:50051");

  // Define long and short options
  struct option long_options[] = {
      {"addr", required_argument, nullptr, 'a'},
      {nullptr, 0, nullptr, 0}
  };

  // Parse command-line arguments
  int option;
  int option_index = 0;
  while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) {
    switch (option) {
      case 'a':
        server_address = optarg;
        break;
      default:
        std::cerr << "Usage: " << argv[0] << " [--addr=<address>] or [-a <address>]" << std::endl;
        return 1;
    }
  }

   // run the HTTP server in a thread - see comment below
    std::thread t([&]()
            {
                RunServer(server_address);
                return 0;
            });


    //);
    start_llama_server();
                        std::cout << "stopping" << std::endl;

    t.join();

    llama_backend_free();
  return 0;
}