File size: 17,527 Bytes
7def60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
#!/usr/bin/env python3
"""
Extra gRPC server for HuggingFace AutoModel models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
from threading import Thread
import asyncio
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import torch
import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
def mean_pooling(model_output, attention_mask):
"""
Mean pooling to get sentence embeddings. See:
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
"""
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
compute = torch.float16
if request.F16Memory == True:
compute=torch.bfloat16
self.CUDA = torch.cuda.is_available()
self.OV=False
device_map="cpu"
quantization = None
if self.CUDA:
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="cuda:0"
if request.Quantization == "bnb_4bit":
quantization = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_compute_dtype = compute,
bnb_4bit_quant_type = "nf4",
bnb_4bit_use_double_quant = True,
load_in_8bit = False,
)
elif request.Quantization == "bnb_8bit":
quantization = BitsAndBytesConfig(
load_in_4bit=False,
bnb_4bit_compute_dtype = None,
load_in_8bit=True,
)
try:
if request.Type == "AutoModelForCausalLM":
if XPU:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
device_map="xpu"
compute=torch.float16
if request.Quantization == "xpu_4bit":
xpu_4bit = True
xpu_8bit = False
elif request.Quantization == "xpu_8bit":
xpu_4bit = False
xpu_8bit = True
else:
xpu_4bit = False
xpu_8bit = False
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
device_map=device_map,
load_in_4bit=xpu_4bit,
load_in_8bit=xpu_8bit,
torch_dtype=compute)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
elif request.Type == "OVModelForCausalLM":
from optimum.intel.openvino import OVModelForCausalLM
from openvino.runtime import Core
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="AUTO"
devices = Core().available_devices
if "GPU" in " ".join(devices):
device_map="AUTO:GPU"
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
if "CPU" or "NPU" in device_map:
if "-CPU" or "-NPU" not in device_map:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
else:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
self.model = OVModelForCausalLM.from_pretrained(model_name,
compile=True,
trust_remote_code=request.TrustRemoteCode,
ov_config=ovconfig,
device=device_map)
self.OV = True
elif request.Type == "OVModelForFeatureExtraction":
from optimum.intel.openvino import OVModelForFeatureExtraction
from openvino.runtime import Core
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="AUTO"
devices = Core().available_devices
if "GPU" in " ".join(devices):
device_map="AUTO:GPU"
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
if "CPU" or "NPU" in device_map:
if "-CPU" or "-NPU" not in device_map:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
else:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
self.model = OVModelForFeatureExtraction.from_pretrained(model_name,
compile=True,
trust_remote_code=request.TrustRemoteCode,
ov_config=ovconfig,
export=True,
device=device_map)
self.OV = True
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
if request.ContextSize > 0:
self.max_tokens = request.ContextSize
else:
self.max_tokens = self.model.config.max_position_embeddings
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
print("Error:", err, file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
set_seed(request.Seed)
# Tokenize input
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)
if request.TopP < 0 or request.TopP > 1:
request.TopP = 1
if request.TopK <= 0:
request.TopK = 50
if request.Temperature > 0 :
sample=True
else:
sample=False
request.TopP == None
request.TopK == None
request.Temperature == None
prompt = request.Prompt
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
inputs = self.tokenizer(prompt, return_tensors="pt")
if request.Tokens > 0:
max_tokens = request.Tokens
else:
max_tokens = self.max_tokens - inputs["input_ids"].size()[inputs["input_ids"].dim()-1]
if self.CUDA:
inputs = inputs.to("cuda")
if XPU and self.OV == False:
inputs = inputs.to("xpu")
streaming = False
criteria=[]
if request.StopPrompts:
criteria = StoppingCriteriaList(
[
StopStringCriteria(tokenizer=self.tokenizer, stop_strings=request.StopPrompts),
]
)
if streaming:
streamer=TextIteratorStreamer(self.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
config=dict(inputs,
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
attention_mask=inputs["attention_mask"],
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id,
streamer=streamer,
stopping_criteria=criteria,
use_cache=True,
)
thread=Thread(target=self.model.generate, kwargs=config)
thread.start()
generated_text = ""
try:
for new_text in streamer:
generated_text += new_text
yield backend_pb2.Reply(message=bytes(new_text, encoding='utf-8'))
finally:
thread.join()
else:
if XPU and self.OV == False:
outputs = self.model.generate(inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
pad_token=self.tokenizer.eos_token_id)
else:
outputs = self.model.generate(**inputs,
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id,
stopping_criteria=criteria,
use_cache=True,
)
generated_text = self.tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)[0]
if streaming:
return
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
gen = self._predict(request, context, streaming=False)
res = await gen.__anext__()
return res
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
iterations = self._predict(request, context, streaming=True)
try:
async for iteration in iterations:
yield iteration
finally:
await iterations.aclose()
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
asyncio.run(serve(args.addr))
|