File size: 21,184 Bytes
7def60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
package openai

import (
	"bufio"
	"bytes"
	"encoding/json"
	"fmt"
	"strings"
	"time"

	"github.com/gofiber/fiber/v2"
	"github.com/google/uuid"
	"github.com/mudler/LocalAI/core/backend"
	"github.com/mudler/LocalAI/core/config"
	"github.com/mudler/LocalAI/core/schema"
	"github.com/mudler/LocalAI/pkg/functions"
	model "github.com/mudler/LocalAI/pkg/model"
	"github.com/rs/zerolog/log"
	"github.com/valyala/fasthttp"
)

// ChatEndpoint is the OpenAI Completion API endpoint https://platform.openai.com/docs/api-reference/chat/create
// @Summary Generate a chat completions for a given prompt and model.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/chat/completions [post]
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
	textContentToReturn := ""
	id := uuid.New().String()
	created := int(time.Now().Unix())

	process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
		initialMessage := schema.OpenAIResponse{
			ID:      id,
			Created: created,
			Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
			Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &textContentToReturn}}},
			Object:  "chat.completion.chunk",
		}
		responses <- initialMessage

		ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
			resp := schema.OpenAIResponse{
				ID:      id,
				Created: created,
				Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
				Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
				Object:  "chat.completion.chunk",
				Usage: schema.OpenAIUsage{
					PromptTokens:     usage.Prompt,
					CompletionTokens: usage.Completion,
					TotalTokens:      usage.Prompt + usage.Completion,
				},
			}

			responses <- resp
			return true
		})
		close(responses)
	}
	processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
		result := ""
		_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
			result += s
			// TODO: Change generated BNF grammar to be compliant with the schema so we can
			// stream the result token by token here.
			return true
		})

		textContentToReturn = functions.ParseTextContent(result, config.FunctionsConfig)
		result = functions.CleanupLLMResult(result, config.FunctionsConfig)
		results := functions.ParseFunctionCall(result, config.FunctionsConfig)
		log.Debug().Msgf("Text content to return: %s", textContentToReturn)
		noActionToRun := len(results) > 0 && results[0].Name == noAction || len(results) == 0

		switch {
		case noActionToRun:
			initialMessage := schema.OpenAIResponse{
				ID:      id,
				Created: created,
				Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
				Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &textContentToReturn}}},
				Object:  "chat.completion.chunk",
			}
			responses <- initialMessage

			result, err := handleQuestion(config, req, ml, startupOptions, results, result, prompt)
			if err != nil {
				log.Error().Err(err).Msg("error handling question")
				return
			}

			resp := schema.OpenAIResponse{
				ID:      id,
				Created: created,
				Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
				Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
				Object:  "chat.completion.chunk",
				Usage: schema.OpenAIUsage{
					PromptTokens:     tokenUsage.Prompt,
					CompletionTokens: tokenUsage.Completion,
					TotalTokens:      tokenUsage.Prompt + tokenUsage.Completion,
				},
			}

			responses <- resp

		default:
			for i, ss := range results {
				name, args := ss.Name, ss.Arguments

				initialMessage := schema.OpenAIResponse{
					ID:      id,
					Created: created,
					Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
					Choices: []schema.Choice{{
						Delta: &schema.Message{
							Role: "assistant",
							ToolCalls: []schema.ToolCall{
								{
									Index: i,
									ID:    id,
									Type:  "function",
									FunctionCall: schema.FunctionCall{
										Name: name,
									},
								},
							},
						}}},
					Object: "chat.completion.chunk",
				}
				responses <- initialMessage

				responses <- schema.OpenAIResponse{
					ID:      id,
					Created: created,
					Model:   req.Model, // we have to return what the user sent here, due to OpenAI spec.
					Choices: []schema.Choice{{
						Delta: &schema.Message{
							Role:    "assistant",
							Content: &textContentToReturn,
							ToolCalls: []schema.ToolCall{
								{
									Index: i,
									ID:    id,
									Type:  "function",
									FunctionCall: schema.FunctionCall{
										Arguments: args,
									},
								},
							},
						}}},
					Object: "chat.completion.chunk",
				}
			}
		}

		close(responses)
	}

	return func(c *fiber.Ctx) error {
		modelFile, input, err := readRequest(c, cl, ml, startupOptions, true)
		if err != nil {
			return fmt.Errorf("failed reading parameters from request:%w", err)
		}

		config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
		if err != nil {
			return fmt.Errorf("failed reading parameters from request:%w", err)
		}
		log.Debug().Msgf("Configuration read: %+v", config)

		funcs := input.Functions
		shouldUseFn := len(input.Functions) > 0 && config.ShouldUseFunctions()
		strictMode := false

		for _, f := range input.Functions {
			if f.Strict {
				strictMode = true
				break
			}
		}

		// Allow the user to set custom actions via config file
		// to be "embedded" in each model
		noActionName := "answer"
		noActionDescription := "use this action to answer without performing any action"

		if config.FunctionsConfig.NoActionFunctionName != "" {
			noActionName = config.FunctionsConfig.NoActionFunctionName
		}
		if config.FunctionsConfig.NoActionDescriptionName != "" {
			noActionDescription = config.FunctionsConfig.NoActionDescriptionName
		}

		if config.ResponseFormatMap != nil {
			d := schema.ChatCompletionResponseFormat{}
			dat, err := json.Marshal(config.ResponseFormatMap)
			if err != nil {
				return err
			}
			err = json.Unmarshal(dat, &d)
			if err != nil {
				return err
			}
			if d.Type == "json_object" {
				input.Grammar = functions.JSONBNF
			} else if d.Type == "json_schema" {
				d := schema.JsonSchemaRequest{}
				dat, err := json.Marshal(config.ResponseFormatMap)
				if err != nil {
					return err
				}
				err = json.Unmarshal(dat, &d)
				if err != nil {
					return err
				}
				fs := &functions.JSONFunctionStructure{
					AnyOf: []functions.Item{d.JsonSchema.Schema},
				}
				g, err := fs.Grammar(config.FunctionsConfig.GrammarOptions()...)
				if err == nil {
					input.Grammar = g
				}
			}
		}

		config.Grammar = input.Grammar

		if shouldUseFn {
			log.Debug().Msgf("Response needs to process functions")
		}

		switch {
		case (!config.FunctionsConfig.GrammarConfig.NoGrammar || strictMode) && shouldUseFn:
			noActionGrammar := functions.Function{
				Name:        noActionName,
				Description: noActionDescription,
				Parameters: map[string]interface{}{
					"properties": map[string]interface{}{
						"message": map[string]interface{}{
							"type":        "string",
							"description": "The message to reply the user with",
						}},
				},
			}

			// Append the no action function
			if !config.FunctionsConfig.DisableNoAction {
				funcs = append(funcs, noActionGrammar)
			}

			// Force picking one of the functions by the request
			if config.FunctionToCall() != "" {
				funcs = funcs.Select(config.FunctionToCall())
			}

			// Update input grammar
			jsStruct := funcs.ToJSONStructure(config.FunctionsConfig.FunctionNameKey, config.FunctionsConfig.FunctionNameKey)
			g, err := jsStruct.Grammar(config.FunctionsConfig.GrammarOptions()...)
			if err == nil {
				config.Grammar = g
			}
		case input.JSONFunctionGrammarObject != nil:
			g, err := input.JSONFunctionGrammarObject.Grammar(config.FunctionsConfig.GrammarOptions()...)
			if err == nil {
				config.Grammar = g
			}
		default:
			// Force picking one of the functions by the request
			if config.FunctionToCall() != "" {
				funcs = funcs.Select(config.FunctionToCall())
			}
		}

		// process functions if we have any defined or if we have a function call string

		// functions are not supported in stream mode (yet?)
		toStream := input.Stream

		log.Debug().Msgf("Parameters: %+v", config)

		var predInput string

		// If we are using the tokenizer template, we don't need to process the messages
		// unless we are processing functions
		if !config.TemplateConfig.UseTokenizerTemplate || shouldUseFn {
			suppressConfigSystemPrompt := false
			mess := []string{}
			for messageIndex, i := range input.Messages {
				var content string
				role := i.Role

				// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
				// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
				if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
					roleFn := "assistant_function_call"
					r := config.Roles[roleFn]
					if r != "" {
						role = roleFn
					}
				}
				r := config.Roles[role]
				contentExists := i.Content != nil && i.StringContent != ""

				fcall := i.FunctionCall
				if len(i.ToolCalls) > 0 {
					fcall = i.ToolCalls
				}

				// First attempt to populate content via a chat message specific template
				if config.TemplateConfig.ChatMessage != "" {
					chatMessageData := model.ChatMessageTemplateData{
						SystemPrompt: config.SystemPrompt,
						Role:         r,
						RoleName:     role,
						Content:      i.StringContent,
						FunctionCall: fcall,
						FunctionName: i.Name,
						LastMessage:  messageIndex == (len(input.Messages) - 1),
						Function:     config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
						MessageIndex: messageIndex,
					}
					templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
					if err != nil {
						log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
					} else {
						if templatedChatMessage == "" {
							log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
							continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
						}
						log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
						content = templatedChatMessage
					}
				}

				marshalAnyRole := func(f any) {
					j, err := json.Marshal(f)
					if err == nil {
						if contentExists {
							content += "\n" + fmt.Sprint(r, " ", string(j))
						} else {
							content = fmt.Sprint(r, " ", string(j))
						}
					}
				}
				marshalAny := func(f any) {
					j, err := json.Marshal(f)
					if err == nil {
						if contentExists {
							content += "\n" + string(j)
						} else {
							content = string(j)
						}
					}
				}
				// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
				if content == "" {
					if r != "" {
						if contentExists {
							content = fmt.Sprint(r, i.StringContent)
						}

						if i.FunctionCall != nil {
							marshalAnyRole(i.FunctionCall)
						}
						if i.ToolCalls != nil {
							marshalAnyRole(i.ToolCalls)
						}
					} else {
						if contentExists {
							content = fmt.Sprint(i.StringContent)
						}
						if i.FunctionCall != nil {
							marshalAny(i.FunctionCall)
						}
						if i.ToolCalls != nil {
							marshalAny(i.ToolCalls)
						}
					}
					// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
					if contentExists && role == "system" {
						suppressConfigSystemPrompt = true
					}
				}

				mess = append(mess, content)
			}

			joinCharacter := "\n"
			if config.TemplateConfig.JoinChatMessagesByCharacter != nil {
				joinCharacter = *config.TemplateConfig.JoinChatMessagesByCharacter
			}

			predInput = strings.Join(mess, joinCharacter)
			log.Debug().Msgf("Prompt (before templating): %s", predInput)

			templateFile := ""

			// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
			if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
				templateFile = config.Model
			}

			if config.TemplateConfig.Chat != "" && !shouldUseFn {
				templateFile = config.TemplateConfig.Chat
			}

			if config.TemplateConfig.Functions != "" && shouldUseFn {
				templateFile = config.TemplateConfig.Functions
			}

			if templateFile != "" {
				templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
					SystemPrompt:         config.SystemPrompt,
					SuppressSystemPrompt: suppressConfigSystemPrompt,
					Input:                predInput,
					Functions:            funcs,
				})
				if err == nil {
					predInput = templatedInput
					log.Debug().Msgf("Template found, input modified to: %s", predInput)
				} else {
					log.Debug().Msgf("Template failed loading: %s", err.Error())
				}
			}

			log.Debug().Msgf("Prompt (after templating): %s", predInput)
			if shouldUseFn && config.Grammar != "" {
				log.Debug().Msgf("Grammar: %+v", config.Grammar)
			}
		}

		switch {
		case toStream:

			log.Debug().Msgf("Stream request received")
			c.Context().SetContentType("text/event-stream")
			//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
			//	c.Set("Content-Type", "text/event-stream")
			c.Set("Cache-Control", "no-cache")
			c.Set("Connection", "keep-alive")
			c.Set("Transfer-Encoding", "chunked")

			responses := make(chan schema.OpenAIResponse)

			if !shouldUseFn {
				go process(predInput, input, config, ml, responses)
			} else {
				go processTools(noActionName, predInput, input, config, ml, responses)
			}

			c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
				usage := &schema.OpenAIUsage{}
				toolsCalled := false
				for ev := range responses {
					usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
					if len(ev.Choices[0].Delta.ToolCalls) > 0 {
						toolsCalled = true
					}
					var buf bytes.Buffer
					enc := json.NewEncoder(&buf)
					enc.Encode(ev)
					log.Debug().Msgf("Sending chunk: %s", buf.String())
					_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
					if err != nil {
						log.Debug().Msgf("Sending chunk failed: %v", err)
						input.Cancel()
					}
					w.Flush()
				}

				finishReason := "stop"
				if toolsCalled {
					finishReason = "tool_calls"
				} else if toolsCalled && len(input.Tools) == 0 {
					finishReason = "function_call"
				}

				resp := &schema.OpenAIResponse{
					ID:      id,
					Created: created,
					Model:   input.Model, // we have to return what the user sent here, due to OpenAI spec.
					Choices: []schema.Choice{
						{
							FinishReason: finishReason,
							Index:        0,
							Delta:        &schema.Message{Content: &textContentToReturn},
						}},
					Object: "chat.completion.chunk",
					Usage:  *usage,
				}
				respData, _ := json.Marshal(resp)

				w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
				w.WriteString("data: [DONE]\n\n")
				w.Flush()
			}))
			return nil

		// no streaming mode
		default:
			result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
				if !shouldUseFn {
					// no function is called, just reply and use stop as finish reason
					*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
					return
				}

				textContentToReturn = functions.ParseTextContent(s, config.FunctionsConfig)
				s = functions.CleanupLLMResult(s, config.FunctionsConfig)
				results := functions.ParseFunctionCall(s, config.FunctionsConfig)
				log.Debug().Msgf("Text content to return: %s", textContentToReturn)
				noActionsToRun := len(results) > 0 && results[0].Name == noActionName || len(results) == 0

				switch {
				case noActionsToRun:
					result, err := handleQuestion(config, input, ml, startupOptions, results, s, predInput)
					if err != nil {
						log.Error().Err(err).Msg("error handling question")
						return
					}
					*c = append(*c, schema.Choice{
						Message: &schema.Message{Role: "assistant", Content: &result}})
				default:
					toolChoice := schema.Choice{
						Message: &schema.Message{
							Role: "assistant",
						},
					}

					if len(input.Tools) > 0 {
						toolChoice.FinishReason = "tool_calls"
					}

					for _, ss := range results {
						name, args := ss.Name, ss.Arguments
						if len(input.Tools) > 0 {
							// If we are using tools, we condense the function calls into
							// a single response choice with all the tools
							toolChoice.Message.Content = textContentToReturn
							toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
								schema.ToolCall{
									ID:   id,
									Type: "function",
									FunctionCall: schema.FunctionCall{
										Name:      name,
										Arguments: args,
									},
								},
							)
						} else {
							// otherwise we return more choices directly
							*c = append(*c, schema.Choice{
								FinishReason: "function_call",
								Message: &schema.Message{
									Role:    "assistant",
									Content: &textContentToReturn,
									FunctionCall: map[string]interface{}{
										"name":      name,
										"arguments": args,
									},
								},
							})
						}
					}

					if len(input.Tools) > 0 {
						// we need to append our result if we are using tools
						*c = append(*c, toolChoice)
					}
				}

			}, nil)
			if err != nil {
				return err
			}

			resp := &schema.OpenAIResponse{
				ID:      id,
				Created: created,
				Model:   input.Model, // we have to return what the user sent here, due to OpenAI spec.
				Choices: result,
				Object:  "chat.completion",
				Usage: schema.OpenAIUsage{
					PromptTokens:     tokenUsage.Prompt,
					CompletionTokens: tokenUsage.Completion,
					TotalTokens:      tokenUsage.Prompt + tokenUsage.Completion,
				},
			}
			respData, _ := json.Marshal(resp)
			log.Debug().Msgf("Response: %s", respData)

			// Return the prediction in the response body
			return c.JSON(resp)
		}
	}
}

func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, funcResults []functions.FuncCallResults, result, prompt string) (string, error) {

	if len(funcResults) == 0 && result != "" {
		log.Debug().Msgf("nothing function results but we had a message from the LLM")

		return result, nil
	}

	log.Debug().Msgf("nothing to do, computing a reply")
	arg := ""
	if len(funcResults) > 0 {
		arg = funcResults[0].Arguments
	}
	// If there is a message that the LLM already sends as part of the JSON reply, use it
	arguments := map[string]interface{}{}
	if err := json.Unmarshal([]byte(arg), &arguments); err != nil {
		log.Debug().Msg("handleQuestion: function result did not contain a valid JSON object")
	}
	m, exists := arguments["message"]
	if exists {
		switch message := m.(type) {
		case string:
			if message != "" {
				log.Debug().Msgf("Reply received from LLM: %s", message)
				message = backend.Finetune(*config, prompt, message)
				log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)

				return message, nil
			}
		}
	}

	log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
	// Otherwise ask the LLM to understand the JSON output and the context, and return a message
	// Note: This costs (in term of CPU/GPU) another computation
	config.Grammar = ""
	images := []string{}
	for _, m := range input.Messages {
		images = append(images, m.StringImages...)
	}

	predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil)
	if err != nil {
		log.Error().Err(err).Msg("model inference failed")
		return "", err
	}

	prediction, err := predFunc()
	if err != nil {
		log.Error().Err(err).Msg("prediction failed")
		return "", err
	}
	return backend.Finetune(*config, prompt, prediction.Response), nil
}