|
|
|
from concurrent import futures |
|
import time |
|
import argparse |
|
import signal |
|
import sys |
|
import os |
|
|
|
import backend_pb2 |
|
import backend_pb2_grpc |
|
|
|
import grpc |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel |
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 |
|
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) |
|
MAMBA_CHAT= os.environ.get('MAMBA_CHAT', '1') == '1' |
|
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer): |
|
""" |
|
A gRPC servicer that implements the Backend service defined in backend.proto. |
|
""" |
|
def generate(self,prompt, max_new_tokens): |
|
""" |
|
Generates text based on the given prompt and maximum number of new tokens. |
|
|
|
Args: |
|
prompt (str): The prompt to generate text from. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
|
|
Returns: |
|
str: The generated text. |
|
""" |
|
self.generator.end_beam_search() |
|
|
|
|
|
ids = self.generator.tokenizer.encode(prompt) |
|
|
|
self.generator.gen_begin_reuse(ids) |
|
initial_len = self.generator.sequence[0].shape[0] |
|
has_leading_space = False |
|
decoded_text = '' |
|
for i in range(max_new_tokens): |
|
token = self.generator.gen_single_token() |
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('β'): |
|
has_leading_space = True |
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) |
|
if has_leading_space: |
|
decoded_text = ' ' + decoded_text |
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id: |
|
break |
|
return decoded_text |
|
|
|
def Health(self, request, context): |
|
""" |
|
Returns a health check message. |
|
|
|
Args: |
|
request: The health check request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Reply: The health check reply. |
|
""" |
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) |
|
|
|
def LoadModel(self, request, context): |
|
""" |
|
Loads a language model. |
|
|
|
Args: |
|
request: The load model request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Result: The load model result. |
|
""" |
|
try: |
|
tokenizerModel = request.Tokenizer |
|
if tokenizerModel == "": |
|
tokenizerModel = request.Model |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizerModel) |
|
if MAMBA_CHAT: |
|
tokenizer.eos_token = "<|endoftext|>" |
|
tokenizer.pad_token = tokenizer.eos_token |
|
self.tokenizer = tokenizer |
|
self.model = MambaLMHeadModel.from_pretrained(request.Model, device="cuda", dtype=torch.float16) |
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
return backend_pb2.Result(message="Model loaded successfully", success=True) |
|
|
|
def Predict(self, request, context): |
|
""" |
|
Generates text based on the given prompt and sampling parameters. |
|
|
|
Args: |
|
request: The predict request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Result: The predict result. |
|
""" |
|
if request.TopP == 0: |
|
request.TopP = 0.9 |
|
|
|
max_tokens = request.Tokens |
|
|
|
if request.Tokens == 0: |
|
max_tokens = 2000 |
|
|
|
|
|
tokens = self.tokenizer(request.Prompt, return_tensors="pt") |
|
input_ids = tokens.input_ids.to(device="cuda") |
|
out = self.model.generate(input_ids=input_ids, max_length=max_tokens, temperature=request.Temperature, |
|
top_p=request.TopP, eos_token_id=self.tokenizer.eos_token_id) |
|
|
|
decoded = self.tokenizer.batch_decode(out) |
|
|
|
generated_text = decoded[0] |
|
|
|
|
|
if request.Prompt in generated_text: |
|
generated_text = generated_text.replace(request.Prompt, "") |
|
|
|
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8')) |
|
|
|
def PredictStream(self, request, context): |
|
""" |
|
Generates text based on the given prompt and sampling parameters, and streams the results. |
|
|
|
Args: |
|
request: The predict stream request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Result: The predict stream result. |
|
""" |
|
yield self.Predict(request, context) |
|
|
|
def serve(address): |
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) |
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) |
|
server.add_insecure_port(address) |
|
server.start() |
|
print("Server started. Listening on: " + address, file=sys.stderr) |
|
|
|
|
|
def signal_handler(sig, frame): |
|
print("Received termination signal. Shutting down...") |
|
server.stop(0) |
|
sys.exit(0) |
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
try: |
|
while True: |
|
time.sleep(_ONE_DAY_IN_SECONDS) |
|
except KeyboardInterrupt: |
|
server.stop(0) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the gRPC server.") |
|
parser.add_argument( |
|
"--addr", default="localhost:50051", help="The address to bind the server to." |
|
) |
|
args = parser.parse_args() |
|
|
|
serve(args.addr) |
|
|