|
name: llama3-8b-instruct |
|
mmap: true |
|
parameters: |
|
model: huggingface://second-state/Llama-3-8B-Instruct-GGUF/Meta-Llama-3-8B-Instruct-Q5_K_M.gguf |
|
|
|
template: |
|
chat_message: | |
|
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|> |
|
|
|
{{ if .FunctionCall -}} |
|
Function call: |
|
{{ else if eq .RoleName "tool" -}} |
|
Function response: |
|
{{ end -}} |
|
{{ if .Content -}} |
|
{{.Content -}} |
|
{{ else if .FunctionCall -}} |
|
{{ toJson .FunctionCall -}} |
|
{{ end -}} |
|
<|eot_id|> |
|
function: | |
|
<|start_header_id|>system<|end_header_id|> |
|
|
|
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: |
|
<tools> |
|
{{range .Functions}} |
|
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }} |
|
{{end}} |
|
</tools> |
|
Use the following pydantic model json schema for each tool call you will make: |
|
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
Function call: |
|
chat: | |
|
<|begin_of_text|>{{.Input }} |
|
<|start_header_id|>assistant<|end_header_id|> |
|
completion: | |
|
{{.Input}} |
|
context_size: 8192 |
|
f16: true |
|
stopwords: |
|
- <|im_end|> |
|
- <dummy32000> |
|
- "<|eot_id|>" |
|
usage: | |
|
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ |
|
"model": "llama3-8b-instruct", |
|
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}] |
|
}' |
|
|