File size: 4,236 Bytes
223453a
 
 
 
 
e1f65c8
223453a
 
 
e1f65c8
223453a
e1f65c8
223453a
e1f65c8
223453a
 
 
 
 
 
 
 
 
 
 
e1f65c8
 
 
 
 
 
 
 
223453a
 
 
e1f65c8
223453a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f65c8
223453a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f65c8
223453a
 
 
 
 
 
 
e1f65c8
223453a
 
 
 
 
 
 
 
e1f65c8
223453a
 
 
 
 
 
 
e1f65c8
223453a
 
 
e1f65c8
223453a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a34ffd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from spaces import GPU  # IMPORTANTE: Ativando suporte ao ZeroGPU

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
model_repo_id = "stabilityai/sdxl-turbo"  # Pode trocar por outro modelo se quiser

pipe = None  # O modelo só vai carregar DENTRO da função GPU

@GPU  # 🚨 Essa é a função que o Hugging Face vai usar para alocar GPU temporária
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    global pipe

    if pipe is None:
        # 🚨 Carregamento do modelo só quando o ZeroGPU te der acesso à GPU
        torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
        pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template (ZeroGPU Ready ✅)")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)