File size: 1,155 Bytes
674c93a ee7346e c58ca64 ee7346e c58ca64 acffed1 674c93a 6548833 674c93a 6548833 acffed1 674c93a acffed1 674c93a 6548833 674c93a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
from icevision.all import *
from icevision.models.checkpoint import *
import PIL
checkpoint_path = "fasterRCNNKangaroo.pth"
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet50_fpn,
num_classes=2)
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
img = PIL.Image.fromarray(img, "RGB")
pred_dict = models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=ClassMap(['kangaroo']), detection_threshold=0.5)
return pred_dict["img"]
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
examples=['00004.jpg','00083.jpg', '00119.jpg']).launch(share=False) |