|
from gradio.outputs import Label |
|
from icevision.all import * |
|
from icevision.models.checkpoint import * |
|
import PIL |
|
import gradio as gr |
|
import os |
|
|
|
|
|
checkpoint_path = "edgilr/fasterRCNNKangaroo.pth" |
|
checkpoint_and_model = model_from_checkpoint(checkpoint_path) |
|
model = checkpoint_and_model["model"] |
|
model_type = checkpoint_and_model["model_type"] |
|
class_map = checkpoint_and_model["class_map"] |
|
|
|
|
|
img_size = checkpoint_and_model["img_size"] |
|
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) |
|
|
|
|
|
examples = [ |
|
['00004.jpg'], |
|
['00083.jpg'], |
|
['00119.jpg'] |
|
] |
|
|
|
def show_preds(input_image): |
|
img = PIL.Image.fromarray(input_image, "RGB") |
|
pred_dict = model_type.end2end_detect(img, valid_tfms, model, |
|
class_map=class_map, |
|
detection_threshold=0.5, |
|
display_label=False, |
|
display_bbox=True, |
|
return_img=True, |
|
font_size=16, |
|
label_color="#FF59D6") |
|
return pred_dict["img"] |
|
|
|
gr_interface = gr.Interface( |
|
fn=show_preds, |
|
inputs=["image"], |
|
outputs=[gr.outputs.Image(type="pil", label="FasterRCNN Inference")], |
|
title="Kangaroo Object Detector", |
|
description="", |
|
examples=examples, |
|
) |
|
gr_interface.launch(inline=False, share=False, debug=True) |
|
|