import pandas as pd | |
from fastai.text.all import * | |
from datasets import load_dataset | |
#from transformers import pipeline | |
import gradio as gr | |
# Modelo de clasificaci贸n usando LSTM | |
#learner = load_learner('modelLSTM.pkl') | |
# Modelo de clasificaci贸n de texto usando modelos de lenguaje | |
learner = load_learner('modelML.pkl') | |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n | |
#classifier = pipeline('text-classification', model='edgilr/clasificador-rotten-tomatoes') | |
def predict(txt): | |
# Modelo de clasificaci贸n usando LSTM o modelo de clasificaci贸n de texto usando modelos de lenguaje | |
pred,pred_idx,probs = learner.predict(txt) | |
return pred | |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n | |
#return classifier(txt)['label'] | |
gr.Interface(fn=predict, inputs=["text"], outputs=["text"], | |
examples=['lovingly photographed in the manner of a golden book sprung to life , stuart little 2 manages sweetness largely without stickiness .', | |
'the thing looks like a made-for-home-video quickie .']).launch(share=True) |