Update app.py
Browse files
app.py
CHANGED
@@ -8,17 +8,17 @@ import gradio as gr
|
|
8 |
#learner = load_learner('modelLSTM.pkl')
|
9 |
|
10 |
# Modelo de clasificaci贸n de texto usando modelos de lenguaje
|
11 |
-
learner = load_learner('modelML.pkl')
|
12 |
|
13 |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n
|
14 |
-
|
15 |
|
16 |
def predict(txt):
|
17 |
# Modelo de clasificaci贸n usando LSTM o modelo de clasificaci贸n de texto usando modelos de lenguaje
|
18 |
-
pred,pred_idx,probs = learner.predict(txt)
|
19 |
-
return pred
|
20 |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n
|
21 |
-
|
22 |
|
23 |
gr.Interface(fn=predict, inputs="text", outputs="text",
|
24 |
examples=['the story gives ample opportunity for large-scale action and suspense , which director shekhar kapur supplies with tremendous skill .',
|
|
|
8 |
#learner = load_learner('modelLSTM.pkl')
|
9 |
|
10 |
# Modelo de clasificaci贸n de texto usando modelos de lenguaje
|
11 |
+
#learner = load_learner('modelML.pkl')
|
12 |
|
13 |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n
|
14 |
+
classifier = pipeline('text-classification', model='edgilr/clasificador-rotten-tomatoes')
|
15 |
|
16 |
def predict(txt):
|
17 |
# Modelo de clasificaci贸n usando LSTM o modelo de clasificaci贸n de texto usando modelos de lenguaje
|
18 |
+
#pred,pred_idx,probs = learner.predict(txt)
|
19 |
+
#return pred
|
20 |
# Modelo de clasificaci贸n basados en mecanismos de atenci贸n
|
21 |
+
return classifier(txt)[0]['label']
|
22 |
|
23 |
gr.Interface(fn=predict, inputs="text", outputs="text",
|
24 |
examples=['the story gives ample opportunity for large-scale action and suspense , which director shekhar kapur supplies with tremendous skill .',
|