Spaces:
Sleeping
Sleeping
File size: 6,818 Bytes
aba3b27 908eafd aba3b27 908eafd aba3b27 3d15ff1 8bfa5bb 3d15ff1 67ff28f adbaf3e 3d15ff1 adbaf3e 3d15ff1 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 adbaf3e aba3b27 1cb45a7 aba3b27 adbaf3e aba3b27 adbaf3e 67ff28f adbaf3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
import streamlit as st
import fitz # PyMuPDF
from docx import Document
import re
import nltk
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, RecognizerResult, Pattern
nltk.download('punkt')
def sentence_tokenize(text):
sentences = nltk.sent_tokenize(text)
return sentences
model_dir_large = 'edithram23/Redaction_Personal_info_v1'
tokenizer_large = AutoTokenizer.from_pretrained(model_dir_large)
model_large = AutoModelForSeq2SeqLM.from_pretrained(model_dir_large)
# model_dir_small = 'edithram23/Redaction'
# tokenizer_small = AutoTokenizer.from_pretrained(model_dir_small)
# model_small = AutoModelForSeq2SeqLM.from_pretrained(model_dir_small)
# def small(text, model=model_small, tokenizer=tokenizer_small):
# inputs = ["Mask Generation: " + text.lower() + '.']
# inputs = tokenizer(inputs, max_length=256, truncation=True, return_tensors="pt")
# output = model.generate(**inputs, num_beams=8, do_sample=True, max_length=len(text))
# decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
# predicted_title = decoded_output.strip()
# pattern = r'\[.*?\]'
# redacted_text = re.sub(pattern, '[redacted]', predicted_title)
# return redacted_text
# Initialize the analyzer engine
analyzer = AnalyzerEngine()
# Define a custom address recognizer using a regex pattern
address_pattern = Pattern(name="address", regex=r"\d+\s\w+\s(?:street|st|road|rd|avenue|ave|lane|ln|drive|dr|blvd|boulevard)\s*\w*", score=0.5)
address_recognizer = PatternRecognizer(supported_entity="ADDRESS", patterns=[address_pattern])
# Add the custom address recognizer to the analyzer
analyzer.registry.add_recognizer(address_recognizer)
analyzer.get_recognizers
# Define a function to extract entities
def extract_entities(text):
entities = {
"NAME": [],
"PHONE_NUMBER": [],
"EMAIL": [],
"ADDRESS": [],
"LOCATION": [],
"IN_AADHAAR": [],
}
output = []
# Analyze the text for PII
results = analyzer.analyze(text=text, language='en')
for result in results:
if result.entity_type == "PERSON":
entities["NAME"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "PHONE_NUMBER":
entities["PHONE_NUMBER"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "EMAIL_ADDRESS":
entities["EMAIL"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == "ADDRESS":
entities["ADDRESS"].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == 'LOCATION':
entities['LOCATION'].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
elif result.entity_type == 'IN_AADHAAR':
entities['IN_PAN'].append(text[result.start:result.end])
output+=[text[result.start:result.end]]
return entities,output
def mask_generation(text, model=model_large, tokenizer=tokenizer_large):
if len(text) < 90:
text = text + '.'
# return small(text)
inputs = ["Mask Generation: " + text.lower() + '.']
inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, max_length=len(text))
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = decoded_output.strip()
pattern = r'\[.*?\]'
redacted_text = re.sub(pattern, '[redacted]', predicted_title)
return redacted_text
def redact_text(page, text):
text_instances = page.search_for(text)
for inst in text_instances:
page.add_redact_annot(inst, fill=(0, 0, 0))
page.apply_redactions()
def read_pdf(file):
pdf_document = fitz.open(stream=file.read(), filetype="pdf")
text = ""
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
text += page.get_text()
return text, pdf_document
def read_docx(file):
doc = Document(file)
text = "\n".join([para.text for para in doc.paragraphs])
return text
def read_txt(file):
text = file.read().decode("utf-8")
return text
def process_file(file):
if file.type == "application/pdf":
return read_pdf(file)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return read_docx(file), None
elif file.type == "text/plain":
return read_txt(file), None
else:
return "Unsupported file type.", None
st.title("Redaction")
uploaded_file = st.file_uploader("Upload a file", type=["pdf", "docx", "txt"])
if uploaded_file is not None:
file_contents, pdf_document = process_file(uploaded_file)
if pdf_document:
redacted_text = []
for pg in pdf_document:
text = pg.get_text('text')
sentences = sentence_tokenize(text)
for sent in sentences:
entities,words_out = extract_entities(sent)
avai_red = pg.search_for(sent)
new=[]
for w in words_out:
new+=w.split('\n')
words_out = [i for i in new if len(i)>2]
print(words_out)
for i in avai_red:
b = pg.get_text("text", clip=i)
# result = [item for item in output if item in b] # Get elements of 'a' that are in 'b'
for j in words_out:
new_n = pg.search_for(j, clip=i)
for all in new_n:
pg.add_redact_annot(all,fill=(0, 0, 0))
pg.apply_redactions()
output_pdf = "output_redacted.pdf"
pdf_document.save(output_pdf)
with open(output_pdf, "rb") as file:
st.download_button(
label="Download Processed PDF",
data=file,
file_name="processed_file.pdf",
mime="application/pdf",
)
else:
token = sentence_tokenize(file_contents)
final = ''
for i in range(0, len(token)):
final += mask_generation(token[i]) + '\n'
processed_text = final
st.text_area("OUTPUT", processed_text, height=400)
st.download_button(
label="Download Processed File",
data=processed_text,
file_name="processed_file.txt",
mime="text/plain",
)
|