sqlbot / app.py
edithram23's picture
update app.py
79bb89f verified
import gradio as gr
from dotenv import load_dotenv
from gradio import ChatMessage
from setup import Speech_Text
from temp import Script
load_dotenv()
transcriptor = Speech_Text()
output_id = None
database_con = Script()
# Function to generate chatbot response
def generate_response(chat_history: list[ChatMessage]):
return database_con.request(chat_history)
def process(audio, input_text, chat_history: list[ChatMessage]):
if audio is not None:
transcript = transcriptor.get_transcript(audio)
chat_history.append({"role": "user", "content": transcript})
elif input_text:
chat_history.append({"role": "user", "content": input_text})
else:
response = 'Provide a query text or an audio to query.'
chat_history.append({"role": "assistant", "content": response})
# audio_data = transcriptor.speech_synthesis(response)
return chat_history
response = generate_response(chat_history)
chat_history.append({"role": "assistant", "content": response})
# audio_data = transcriptor.speech_synthesis(response)
return chat_history
# Create Gradio Blocks interface
with gr.Blocks() as demo:
with gr.Row():
chatbot = gr.Chatbot(label="Chatbot Conversation", type="messages", bubble_full_width=True, show_copy_button=True, autoscroll=True)
with gr.Row():
input_textbox = gr.Textbox(label="Input Text", placeholder="Type your message here...")
input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
process_button = gr.Button("Submit Query")
process_button.click(
fn=process,
inputs=[input_audio, input_textbox, chatbot],
outputs=[chatbot])
if __name__ == "__main__":
demo.launch()