Spaces:
Sleeping
Sleeping
Update temp.py
Browse files
temp.py
CHANGED
@@ -1,41 +1,44 @@
|
|
1 |
-
from langchain_community.utilities import SerpAPIWrapper
|
2 |
-
from langgraph.prebuilt import create_react_agent
|
3 |
-
import getpass
|
4 |
-
import os
|
5 |
-
import sqlite3
|
6 |
-
from langchain_openai import ChatOpenAI
|
7 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
-
from langchain_core.messages import HumanMessage,AIMessage
|
9 |
-
from langchain.agents import initialize_agent
|
10 |
-
from langchain.agents.agent_types import AgentType
|
11 |
-
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
|
12 |
-
from langchain_community.utilities.sql_database import SQLDatabase
|
13 |
-
from langchain_openai import ChatOpenAI
|
14 |
-
from langchain_groq import ChatGroq
|
15 |
-
|
16 |
-
from dotenv import load_dotenv
|
17 |
-
load_dotenv('.env')
|
18 |
-
|
19 |
-
class Script:
|
20 |
-
def __init__(self):
|
21 |
-
self.model = ChatOpenAI(model="gpt-4o-mini")
|
22 |
-
self.groq = ChatGroq(model='llama3-70b-8192')
|
23 |
-
self.db = SQLDatabase.from_uri("sqlite:///sample_database.db")
|
24 |
-
self.toolkit = SQLDatabaseToolkit(db=self.db, llm=self.model)
|
25 |
-
search = TavilySearchResults(max_results=2)
|
26 |
-
tools = self.toolkit.get_tools()+[search]
|
27 |
-
self.agent = create_react_agent(self.model, tools)
|
28 |
-
|
29 |
-
def history(self,hist):
|
30 |
-
message = []
|
31 |
-
for i in hist[-5:]:
|
32 |
-
if(i['role']=='user'):
|
33 |
-
message+=[HumanMessage(content=i['content'])]
|
34 |
-
else:
|
35 |
-
message+=[AIMessage(content=i['content'])]
|
36 |
-
return message
|
37 |
-
|
38 |
-
def request(self,message):
|
39 |
-
message = self.history(message)
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.utilities import SerpAPIWrapper
|
2 |
+
from langgraph.prebuilt import create_react_agent
|
3 |
+
import getpass
|
4 |
+
import os
|
5 |
+
import sqlite3
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
+
from langchain_core.messages import HumanMessage,AIMessage
|
9 |
+
from langchain.agents import initialize_agent
|
10 |
+
from langchain.agents.agent_types import AgentType
|
11 |
+
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
|
12 |
+
from langchain_community.utilities.sql_database import SQLDatabase
|
13 |
+
from langchain_openai import ChatOpenAI
|
14 |
+
from langchain_groq import ChatGroq
|
15 |
+
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
load_dotenv('.env')
|
18 |
+
|
19 |
+
class Script:
|
20 |
+
def __init__(self):
|
21 |
+
self.model = ChatOpenAI(model="gpt-4o-mini")
|
22 |
+
self.groq = ChatGroq(model='llama3-70b-8192')
|
23 |
+
self.db = SQLDatabase.from_uri("sqlite:///sample_database.db")
|
24 |
+
self.toolkit = SQLDatabaseToolkit(db=self.db, llm=self.model)
|
25 |
+
search = TavilySearchResults(max_results=2)
|
26 |
+
tools = self.toolkit.get_tools()+[search]
|
27 |
+
self.agent = create_react_agent(self.model, tools)
|
28 |
+
|
29 |
+
def history(self,hist):
|
30 |
+
message = []
|
31 |
+
for i in hist[-5:]:
|
32 |
+
if(i['role']=='user'):
|
33 |
+
message+=[HumanMessage(content=i['content'])]
|
34 |
+
else:
|
35 |
+
message+=[AIMessage(content=i['content'])]
|
36 |
+
return message
|
37 |
+
|
38 |
+
def request(self,message):
|
39 |
+
message = self.history(message)
|
40 |
+
try :
|
41 |
+
response = self.agent.invoke({"messages": message})
|
42 |
+
return response["messages"][-1].content
|
43 |
+
except:
|
44 |
+
return 'Sorry unable to process the request'
|