Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
from langchain.document_loaders import UnstructuredURLLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from InstructorEmbedding import INSTRUCTOR | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain import HuggingFaceHub | |
import streamlit as st | |
from langchain.utilities import GoogleSerperAPIWrapper | |
class Chatbot: | |
def __init__(self): | |
os.environ["Hugging_Face_API_KEY"] = "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" | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = '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' | |
os.environ["SERPER_API_KEY"] = "a69857e460dd51585e009a43743711b110b6beee" | |
def load_data(self): | |
urls = [ | |
'https://zollege.in/exams/bitsat', | |
'https://zollege.in/exams/cat', | |
'https://zollege.in/exams/gate', | |
'https://zollege.in/exams/neet', | |
'https://zollege.in/exams/lsat', | |
'https://zollege.in/exams/jee-advanced', | |
'https://zollege.in/exams/aipmcet' | |
] | |
loaders = UnstructuredURLLoader(urls=urls) | |
data = loaders.load() | |
return data | |
def split_documents(self, data): | |
text_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=20) | |
docs = text_splitter.split_documents(data) | |
return docs | |
def create_embeddings(self, docs): | |
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="sembeddings/model_gpt_trained") | |
db_instructEmbedd = FAISS.from_documents(docs, instructor_embeddings) | |
retriever = db_instructEmbedd.as_retriever(search_kwargs={"k": 3}) | |
with open("db_instructEmbedd.pkl", "wb") as f: | |
pickle.dump(db_instructEmbedd, f) | |
return retriever | |
def load_embeddings(self): | |
with open("db_instructEmbedd.pkl", "rb") as f: | |
retriever = pickle.load(f) | |
retriever = retriever.as_retriever(search_kwargs={"k": 3}) | |
return retriever | |
def create_qa_model(self, retriever): | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.1}) | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
return qa | |
def run_chatbot(self): | |
st.title('Chatbot Trained on Indian Exam Articles') | |
st.header("Hi!! How Can I Help You ?") | |
query = st.text_input('> ') | |
result = self.qa({'query': query}) | |
st.write(result['result']) | |
st.button('Not Satisfied! Talk to our Expert Here..') | |
def run_google_search(self, query): | |
search = GoogleSerperAPIWrapper() | |
return search.run(query) | |
if __name__ == "__main__": | |
chatbot = Chatbot() | |
data = chatbot.load_data() | |
docs = chatbot.split_documents(data) | |
retriever = chatbot.create_embeddings(docs) | |
retrievers = chatbot.load_embeddings() | |
qa = chatbot.create_qa_model(retrievers) | |
st.title('Chatbot Trained on Indian Exam Articles') | |
st.header("Hi!! How Can I Help You ?") | |
query = st.text_input('ENTER TEXT HERE ') | |
result = qa({'query': query}) | |
st.write(result['result']) | |
if st.button('Not Satisfied! Talk to our Expert Here..'): | |
st.write(run_google_search(query)) | |