chatbot_trial_2 / app.py
edjdhug3's picture
Update app.py
f3bca26
raw
history blame
3.39 kB
import os
import pickle
from langchain.document_loaders import UnstructuredURLLoader
from langchain.text_splitter import CharacterTextSplitter
from InstructorEmbedding import INSTRUCTOR
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA
from langchain import HuggingFaceHub
import streamlit as st
from langchain.utilities import GoogleSerperAPIWrapper
class Chatbot:
def __init__(self):
os.environ["Hugging_Face_API_KEY"] = "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"
os.environ["HUGGINGFACEHUB_API_TOKEN"] = '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'
os.environ["SERPER_API_KEY"] = "a69857e460dd51585e009a43743711b110b6beee"
def load_data(self):
urls = [
'https://zollege.in/exams/bitsat',
'https://zollege.in/exams/cat',
'https://zollege.in/exams/gate',
'https://zollege.in/exams/neet',
'https://zollege.in/exams/lsat',
'https://zollege.in/exams/jee-advanced',
'https://zollege.in/exams/aipmcet'
]
loaders = UnstructuredURLLoader(urls=urls)
data = loaders.load()
return data
def split_documents(self, data):
text_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=20)
docs = text_splitter.split_documents(data)
return docs
def create_embeddings(self, docs):
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="sembeddings/model_gpt_trained")
db_instructEmbedd = FAISS.from_documents(docs, instructor_embeddings)
retriever = db_instructEmbedd.as_retriever(search_kwargs={"k": 3})
with open("db_instructEmbedd.pkl", "wb") as f:
pickle.dump(db_instructEmbedd, f)
return retriever
def load_embeddings(self):
with open("db_instructEmbedd.pkl", "rb") as f:
retriever = pickle.load(f)
retriever = retriever.as_retriever(search_kwargs={"k": 3})
return retriever
def create_qa_model(self, retriever):
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.1})
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
return qa
def run_chatbot(self):
st.title('Chatbot Trained on Indian Exam Articles')
st.header("Hi!! How Can I Help You ?")
query = st.text_input('> ')
result = self.qa({'query': query})
st.write(result['result'])
st.button('Not Satisfied! Talk to our Expert Here..')
def run_google_search(self, query):
search = GoogleSerperAPIWrapper()
return search.run(query)
if __name__ == "__main__":
chatbot = Chatbot()
data = chatbot.load_data()
docs = chatbot.split_documents(data)
retriever = chatbot.create_embeddings(docs)
retrievers = chatbot.load_embeddings()
qa = chatbot.create_qa_model(retrievers)
st.title('Chatbot Trained on Indian Exam Articles')
st.header("Hi!! How Can I Help You ?")
query = st.text_input('ENTER TEXT HERE ')
result = qa({'query': query})
st.write(result['result'])
if st.button('Not Satisfied! Talk to our Expert Here..'):
st.write(run_google_search(query))