import os import streamlit as st import pickle import time from langchain import OpenAI from langchain.chains import RetrievalQAWithSourcesChain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import UnstructuredURLLoader from langchain.embeddings import FakeEmbeddings from langchain.llms import HuggingFaceHub from langchain.chains import LLMChain from langchain.vectorstores import FAISS from dotenv import load_dotenv load_dotenv() # take environment variables from .env (especially openai api key) os.environ["HUGGINGFACEHUB_API_TOKEN"] = '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' class RockyBot: def __init__(self, llm): self.llm = llm self.vectorstore = None def process_urls(self, urls): """Processes the given URLs and saves the FAISS index to a pickle file.""" # load data loader = UnstructuredURLLoader(urls=urls) # split data text_splitter = RecursiveCharacterTextSplitter( separators=['\n\n', '\n', '.', ','], chunk_size=1000 ) docs = text_splitter.split_documents(loader.load()) # create embeddings and save it to FAISS index embeddings = FakeEmbeddings(size=1352) self.vectorstore = FAISS.from_documents(docs, embeddings) # Save the FAISS index to a pickle file with open("faiss_store_openai.pkl", "wb") as f: pickle.dump(self.vectorstore, f) def answer_question(self, question): """Answers the given question using the LLM and retriever.""" chain = RetrievalQAWithSourcesChain.from_llm(llm=self.llm, retriever=self.vectorstore.as_retriever()) result = chain({"question": question}, return_only_outputs=True) return result["answer"], result.get("sources", "") if __name__ == '__main__': llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 64}) rockybot = RockyBot(llm) # Process URLs if the button is clicked if st.sidebar.button("Process URLs"): rockybot.process_urls(st.sidebar.text_input("URL 1"), st.sidebar.text_input("URL 2"), st.sidebar.text_input("URL 3")) st.progress(100.0) # Answer the question if it is not empty query = st.text_input("Question: ") if query: answer, sources = rockybot.answer_question(query) st.header("Answer") st.write(answer) # Display sources, if available if sources: st.subheader("Sources:") for source in sources.split("\n"): st.write(source)