Spaces:
Sleeping
Sleeping
Commit
·
f211596
1
Parent(s):
3cd95d0
Initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import io
|
10 |
+
|
11 |
+
model_pipeline = pipeline("object-detection", model="edm-research/detr-resnet-50-dc5-fashionpedia-finetuned")
|
12 |
+
|
13 |
+
|
14 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
15 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
16 |
+
|
17 |
+
|
18 |
+
def get_output_figure(pil_img, results, threshold):
|
19 |
+
plt.figure(figsize=(16, 10))
|
20 |
+
plt.imshow(pil_img)
|
21 |
+
ax = plt.gca()
|
22 |
+
colors = COLORS * 100
|
23 |
+
|
24 |
+
for result in results:
|
25 |
+
score = result['score']
|
26 |
+
label = result['label']
|
27 |
+
box = list(result['box'].values())
|
28 |
+
if score > threshold:
|
29 |
+
c = COLORS[hash(label) % len(COLORS)]
|
30 |
+
ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3))
|
31 |
+
text = f'{label}: {score:0.2f}'
|
32 |
+
ax.text(box[0], box[1], text, fontsize=15,
|
33 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
34 |
+
plt.axis('off')
|
35 |
+
|
36 |
+
return plt.gcf()
|
37 |
+
|
38 |
+
@spaces.GPU
|
39 |
+
def detect(image):
|
40 |
+
results = model_pipeline(image)
|
41 |
+
print(results)
|
42 |
+
|
43 |
+
output_figure = get_output_figure(image, results, threshold=0.7)
|
44 |
+
|
45 |
+
buf = io.BytesIO()
|
46 |
+
output_figure.savefig(buf, bbox_inches='tight')
|
47 |
+
buf.seek(0)
|
48 |
+
output_pil_img = Image.open(buf)
|
49 |
+
|
50 |
+
return output_pil_img
|
51 |
+
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia")
|
54 |
+
gr.Markdown(
|
55 |
+
"""
|
56 |
+
This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images.
|
57 |
+
This version was trained using detection-datasets/fashionpedia dataset.
|
58 |
+
You can load an image and see the predictions for the objects detected.
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
|
62 |
+
gr.Interface(
|
63 |
+
fn=detect,
|
64 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
65 |
+
outputs=[
|
66 |
+
gr.Image(label="Output prediction", type="pil")
|
67 |
+
]
|
68 |
+
)
|
69 |
+
|
70 |
+
demo.launch(show_error=True)
|