eduardo-meik commited on
Commit
608a73e
·
1 Parent(s): 87d4d83

update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -12
app.py CHANGED
@@ -1,14 +1,77 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # Using object notation
4
- add_selectbox = st.sidebar.selectbox(
5
- "How would you like to be contacted?",
6
- ("Email", "Home phone", "Mobile phone")
7
- )
8
-
9
- # Using "with" notation
10
- with st.sidebar:
11
- add_radio = st.radio(
12
- "Choose a shipping method",
13
- ("Standard (5-15 days)", "Express (2-5 days)")
14
- )
 
1
  import streamlit as st
2
+ from transformers import pipeline, RobertaTokenizerFast, TFRobertaForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification
3
+
4
+ # Sentiment Analysis Pipeline
5
+ sentiment_pipe = pipeline('sentiment-analysis')
6
+
7
+ # Toxicity Classifier
8
+ model_path_toxic = "citizenlab/distilbert-base-multilingual-cased-toxicity"
9
+ toxicity_classifier = pipeline("text-classification", model=model_path_toxic, tokenizer=model_path_toxic)
10
+
11
+ # Emotion Analysis
12
+ tokenizer_emotion = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
13
+ model_emotion = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
14
+ emotion = pipeline('sentiment-analysis', model=model_emotion, tokenizer=tokenizer_emotion)
15
+
16
+ # User Needs Analysis
17
+ tokenizer_needs = AutoTokenizer.from_pretrained("thusken/nb-bert-base-user-needs")
18
+ model_needs = AutoModelForSequenceClassification.from_pretrained("thusken/nb-bert-base-user-needs")
19
+ user_needs = pipeline('text-classification', model=model_needs, tokenizer=tokenizer_needs)
20
+
21
+ st.title("Plataforma de Diálogos Participativos")
22
+
23
+ # Text area for input in sidebar
24
+ text = st.sidebar.text_area("Añade el texto a evaluar")
25
+
26
+ # Create columns for buttons in sidebar
27
+ col1, col2, col3, col4 = st.sidebar.columns(4)
28
+
29
+ # Place each button in a separate column
30
+ run_sentiment_analysis = col1.button("Evaluar Sentimiento")
31
+ run_toxicity_analysis = col2.button("Evaluar Toxicidad")
32
+ run_emotion_analysis = col3.button("Evaluar Emoción")
33
+ run_user_needs_analysis = col4.button("Evaluar Necesidades del Usuario")
34
+
35
+ # Container for output in main layout
36
+ output_container = st.container()
37
+
38
+ # Sentiment analysis
39
+ if run_sentiment_analysis and text:
40
+ with output_container:
41
+ sentiment_output = sentiment_pipe(text)
42
+ label = sentiment_output[0]['label']
43
+ score = round(sentiment_output[0]['score'] * 100, 2)
44
+ st.markdown(f"**Resultado del análisis de sentimiento:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
45
+ elif run_sentiment_analysis and not text:
46
+ st.sidebar.warning("Por favor, añade un texto para evaluar el sentimiento.")
47
+
48
+ # Toxicity analysis
49
+ if run_toxicity_analysis and text:
50
+ with output_container:
51
+ toxicity_output = toxicity_classifier(text)
52
+ label = toxicity_output[0]['label']
53
+ score = round(toxicity_output[0]['score'] * 100, 2)
54
+ st.markdown(f"**Resultado del análisis de toxicidad:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
55
+ elif run_toxicity_analysis and not text:
56
+ st.sidebar.warning("Por favor, añade un texto para evaluar la toxicidad.")
57
+
58
+ # Emotion analysis
59
+ if run_emotion_analysis and text:
60
+ with output_container:
61
+ emotion_output = emotion(text)
62
+ label = emotion_output[0]['label']
63
+ score = round(emotion_output[0]['score'] * 100, 2)
64
+ st.markdown(f"**Resultado del análisis de emoción:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
65
+ elif run_emotion_analysis and not text:
66
+ st.sidebar.warning("Por favor, añade un texto para evaluar la emoción.")
67
+
68
+ # User needs analysis
69
+ if run_user_needs_analysis and text:
70
+ with output_container:
71
+ needs_output = user_needs(text)
72
+ label = needs_output[0]['label']
73
+ score = round(needs_output[0]['score'] * 100, 2)
74
+ st.markdown(f"**Resultado del análisis de necesidades del usuario:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
75
+ elif run_user_needs_analysis and not text:
76
+ st.sidebar.warning("Por favor, añade un texto para evaluar las necesidades del usuario.")
77