File size: 2,703 Bytes
86e673e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import logging
import time
from typing import Callable, Optional, Union

import pandas as pd
import streamlit as st
from bokeh.plotting import Figure
from embedding_lenses.embedding import embed_text
from embedding_lenses.utils import encode_labels
from sentence_transformers import SentenceTransformer

from perplexity_lenses.visualization import draw_interactive_scatter_plot

logger = logging.getLogger(__name__)
EMBEDDING_MODELS = ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2", "flax-sentence-embeddings/all_datasets_v3_mpnet-base"]
DIMENSIONALITY_REDUCTION_ALGORITHMS = ["UMAP", "t-SNE"]
DOCUMENT_TYPES = ["Whole document", "Sentence"]
SEED = 0
LANGUAGES = [
    "af",
    "ar",
    "az",
    "be",
    "bg",
    "bn",
    "ca",
    "cs",
    "da",
    "de",
    "el",
    "en",
    "es",
    "et",
    "fa",
    "fi",
    "fr",
    "gu",
    "he",
    "hi",
    "hr",
    "hu",
    "hy",
    "id",
    "is",
    "it",
    "ja",
    "ka",
    "kk",
    "km",
    "kn",
    "ko",
    "lt",
    "lv",
    "mk",
    "ml",
    "mn",
    "mr",
    "my",
    "ne",
    "nl",
    "no",
    "pl",
    "pt",
    "ro",
    "ru",
    "uk",
    "zh",
]


class ContextLogger:
    def __init__(self, text: str = ""):
        self.text = text
        self.start_time = time.time()

    def __enter__(self):
        logger.info(self.text)

    def __exit__(self, type, value, traceback):
        logger.info(f"Took: {time.time() - self.start_time:.4f} seconds")


def generate_plot(
    df: pd.DataFrame,
    text_column: str,
    label_column: str,
    sample: Optional[int],
    dimensionality_reduction_function: Callable,
    model: SentenceTransformer,
    seed: int = 0,
    context_logger: Union[st.spinner, ContextLogger] = ContextLogger,
) -> Figure:
    if text_column not in df.columns:
        raise ValueError(f"The specified column name doesn't exist. Columns available: {df.columns.values}")
    if label_column not in df.columns:
        df[label_column] = 0
    df = df.dropna(subset=[text_column, label_column])
    if sample:
        df = df.sample(min(sample, df.shape[0]), random_state=seed)
    with context_logger(text="Embedding text..."):
        embeddings = embed_text(df[text_column].values.tolist(), model)
    logger.info("Encoding labels")
    encoded_labels = encode_labels(df[label_column])
    with context_logger("Reducing dimensionality..."):
        embeddings_2d = dimensionality_reduction_function(embeddings)
    logger.info("Generating figure")
    plot = draw_interactive_scatter_plot(
        df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column
    )
    return plot