edugp's picture
Replicate default cc_net preprocessing at inference time on KenlmModel.get_perplexity
0def03f
raw
history blame
3.84 kB
import os
import re
import unicodedata
import urllib.request
from typing import Dict
import kenlm
class KenlmModel:
digit_re: re.Pattern = re.compile(r"\d")
unicode_punct: Dict[str, str] = {
",": ",",
"。": ".",
"、": ",",
"„": '"',
"”": '"',
"“": '"',
"«": '"',
"»": '"',
"1": '"',
"」": '"',
"「": '"',
"《": '"',
"》": '"',
"´": "'",
"∶": ":",
":": ":",
"?": "?",
"!": "!",
"(": "(",
")": ")",
";": ";",
"–": "-",
"—": " - ",
".": ". ",
"~": "~",
"’": "'",
"…": "...",
"━": "-",
"〈": "<",
"〉": ">",
"【": "[",
"】": "]",
"%": "%",
"►": "-",
}
unicode_punct_re = re.compile(f"[{''.join(unicode_punct.keys())}]")
non_printing_chars_re = re.compile(f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]")
def __init__(self, language):
download_kenlm_model(language)
try:
self.model = kenlm.Model(f"{language}.arpa.bin")
except OSError:
os.remove(f"{language}.arpa.bin")
if os.path.exists(f"{language}.sp.model"):
os.remove(f"{language}.sp.model")
raise OSError("File was corrupt and should have been removed. Please, retry.")
@classmethod
def from_pretrained(cls, language: str):
return cls(language)
def get_perplexity(self, doc: str, normalize_cc_net: bool = True):
if normalize_cc_net:
doc = self.normalize(doc)
doc_log_score, doc_length = 0, 0
for line in doc.split("\n"):
log_score = self.model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
return 10.0 ** (-doc_log_score / doc_length)
def normalize(
self,
line: str,
accent: bool = True,
case: bool = True,
numbers: bool = True,
punct: int = 1,
) -> str:
line = line.strip()
if not line:
return line
if case:
line = line.lower()
if accent:
line = self.strip_accents(line)
if numbers:
line = self.digit_re.sub("0", line)
if punct == 1:
line = self.replace_unicode_punct(line)
elif punct == 2:
line = self.remove_unicode_punct(line)
line = self.remove_non_printing_char(line)
return line
def strip_accents(self, line: str) -> str:
"""Strips accents from a piece of text."""
nfd = unicodedata.normalize("NFD", line)
output = [c for c in nfd if unicodedata.category(c) != "Mn"]
if len(output) == line:
return line
return "".join(output)
def replace_unicode_punct(self, text: str) -> str:
return "".join((self.unicode_punct.get(c, c) for c in text))
def remove_unicode_punct(self, text: str) -> str:
"""More aggressive version of replace_unicode_punct but also faster."""
return self.unicode_punct_re.sub("", text)
def remove_non_printing_char(self, text: str) -> str:
return self.non_printing_chars_re.sub("", text)
def download_kenlm_model(language: str):
root_url = "http://dl.fbaipublicfiles.com/cc_net/lm"
bin_name = f"{language}.arpa.bin"
model_name = f"{language}.sp.model"
bin_url = f"{root_url}/{bin_name}"
model_url = f"{root_url}/{model_name}"
if not os.path.isfile(bin_name):
urllib.request.urlretrieve(bin_url, bin_name)
if not os.path.isfile(model_name):
urllib.request.urlretrieve(model_url, model_name)