File size: 7,925 Bytes
64db5cc
8e0957b
a2a351d
 
 
 
1538aa3
4a52fb2
1538aa3
a2a351d
8e0957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a351d
8e0957b
 
1538aa3
8e0957b
 
a2a351d
8e0957b
 
1538aa3
8e0957b
1538aa3
 
 
 
 
 
8e0957b
a2a351d
8e0957b
 
 
64db5cc
 
8e0957b
 
 
 
64db5cc
 
 
 
 
 
 
 
 
8e0957b
 
 
 
 
1538aa3
8e0957b
 
 
 
1538aa3
8e0957b
 
1538aa3
8e0957b
 
 
 
 
 
 
 
1538aa3
8e0957b
 
 
 
1538aa3
8e0957b
 
1538aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0957b
 
1538aa3
 
 
8e0957b
 
 
 
 
 
 
 
 
 
1538aa3
8e0957b
 
a2a351d
 
 
 
 
 
8e0957b
 
 
 
 
 
4a52fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a351d
 
 
 
 
 
 
 
 
 
 
8e0957b
 
 
 
 
 
 
1538aa3
8e0957b
 
 
 
 
 
 
 
1538aa3
 
 
 
16826f3
1538aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0957b
 
 
 
 
 
64db5cc
8e0957b
 
 
 
 
 
 
1609496
8e0957b
 
 
 
 
 
 
 
 
 
0ab3f48
f8c9e01
0ab3f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c9e01
8e0957b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import { useEffect, useRef, useState } from 'react';
import { CONFIG } from '../config';
import {
  getBlogPrompt,
  getPromptGeneratePodcastScript,
} from '../utils/prompts';
//import { getSSEStreamAsync } from '../utils/utils';
import { EXAMPLES } from '../examples';
import { HfInference } from '@huggingface/inference';
import { isBlogMode } from '../utils/utils';

interface SplitContent {
  thought: string;
  codeBlock: string;
}

const getFromTo = (content: string, from: string, to: string): string => {
  const firstSplit = content.split(from, 2);
  if (firstSplit[1] !== undefined) {
    const secondSplit = firstSplit[1].split(to, 1);
    return secondSplit[0];
  } else {
    return '';
  }
};

const splitContent = (content: string): SplitContent => {
  return {
    thought: getFromTo(content, '<think>', '</think>').trim(),
    codeBlock: getFromTo(content, '```yaml', '```').trim(),
  };
};

export const ScriptMaker = ({
  setScript,
  setBlogURL,
  setBusy,
  busy,
  hfToken,
}: {
  setScript: (script: string) => void;
  setBlogURL: (url: string) => void;
  setBusy: (busy: boolean) => void;
  busy: boolean;
  hfToken: string;
}) => {
  const [model, setModel] = useState<string>(CONFIG.inferenceProviderModels[0]);
  const [customModel, setCustomModel] = useState<string>(
    CONFIG.inferenceProviderModels[0]
  );
  const usingModel = model === 'custom' ? customModel : model;

  const [input, setInput] = useState<string>('');
  const [note, setNote] = useState<string>(isBlogMode ? getBlogPrompt() : '');
  const [thought, setThought] = useState<string>('');
  const [isGenerating, setIsGenerating] = useState<boolean>(false);

  const refThought = useRef<HTMLTextAreaElement | null>(null);

  useEffect(() => {
    setBusy(isGenerating);
  }, [isGenerating]);

  useEffect(() => {
    setTimeout(() => {
      // auto scroll
      if (refThought.current) {
        refThought.current.scrollTop = refThought.current.scrollHeight;
      }
    }, 10);
  }, [thought]);

  const generate = async () => {
    setIsGenerating(true);
    setThought('');
    try {
      let responseContent = '';
      /*
      const fetchResponse = await fetch(CONFIG.llmEndpoint, {
        method: 'POST',
        headers: {
          'Content-Type': 'application/json',
          'Authorization': `Bearer ${hfToken}`,
        },
        body: JSON.stringify({
          model: usingModel,
          messages: [
            {
              role: 'user',
              content: getPromptGeneratePodcastScript(input, note),
            },
          ],
          temperature: 0.3,
          stream: true,
          provider: CONFIG.inferenceProvider,
        }),
      });
      if (fetchResponse.status !== 200) {
        const body = await fetchResponse.json();
        throw new Error(body?.error?.message || body?.error || 'Unknown error');
      }
      const chunks = getSSEStreamAsync(fetchResponse);
      */
      const client = new HfInference(hfToken);
      const chunks = client.chatCompletionStream({
        model: usingModel,
        messages: [
          {
            role: 'user',
            content: getPromptGeneratePodcastScript(input, note),
          },
        ],
        temperature: 0.3,
        stream: true,
        provider: CONFIG.inferenceProvider,
      });
      for await (const chunk of chunks) {
        // const stop = chunk.stop;
        //if (chunk.error) {
        //  throw new Error(chunk.error?.message || 'Unknown error');
        //}
        const addedContent = chunk.choices[0].delta.content;
        responseContent += addedContent;
        const { thought, codeBlock } = splitContent(responseContent);
        setThought(thought);
        if (codeBlock.length > 0) {
          setScript(codeBlock);
        }
      }
    } catch (error) {
      console.error(error);
      alert(`ERROR: ${error}`);
    }
    setIsGenerating(false);
    setTimeout(() => {
      const generatePodcastBtn = document.getElementById(
        'btn-generate-podcast'
      );
      generatePodcastBtn?.click();
    }, 50);
  };

  return (
    <div className="card bg-base-100 w-full shadow-xl">
      <div className="card-body">
        <h2 className="card-title">Step 1: Input information</h2>

        <select
          className="select select-bordered w-full"
          disabled={isGenerating || busy}
          onChange={(e) => {
            const idx = parseInt(e.target.value);
            const ex = EXAMPLES[idx];
            if (ex) {
              setInput(ex.input);
              setNote(ex.note);
            }
          }}
        >
          <option selected disabled value={-1}>
            Try one of these examples!!
          </option>
          {EXAMPLES.map((example, index) => (
            <option key={index} value={index}>
              {example.name}
            </option>
          ))}
        </select>

        {isBlogMode && (
          <>
            <input
              type="text"
              placeholder="Blog URL"
              className="input input-bordered w-full"
              onChange={(e) => setBlogURL(e.target.value)}
            />
          </>
        )}

        <textarea
          className="textarea textarea-bordered w-full h-72 p-2"
          placeholder="Type your input information here (an article, a document, etc)..."
          value={input}
          onChange={(e) => setInput(e.target.value)}
          disabled={isGenerating || busy}
        ></textarea>

        <textarea
          className="textarea textarea-bordered w-full h-24 p-2"
          placeholder="Optional note (the theme, tone, etc)..."
          value={note}
          onChange={(e) => setNote(e.target.value)}
          disabled={isGenerating || busy}
        ></textarea>

        <select
          className="select select-bordered"
          value={model}
          onChange={(e) => setModel(e.target.value)}
          disabled={isGenerating || busy}
        >
          {CONFIG.inferenceProviderModels.map((s) => (
            <option key={s} value={s}>
              {s}
            </option>
          ))}
          <option value="custom">Custom</option>
        </select>

        {model === 'custom' && (
          <input
            type="text"
            placeholder="Use a custom model from HF Hub (must be supported by Inference Providers)"
            className="input input-bordered w-full"
            value={customModel}
            onChange={(e) => setCustomModel(e.target.value)}
          />
        )}

        {thought.length > 0 && (
          <>
            <p>Thought process:</p>
            <textarea
              className="textarea textarea-bordered w-full h-24 p-2"
              value={thought}
              ref={refThought}
              readOnly
            ></textarea>
          </>
        )}
        <button
          className="btn btn-primary mt-2"
          onClick={generate}
          disabled={isGenerating || busy || input.length < 10}
        >
          {isGenerating ? (
            <>
              <span className="loading loading-spinner loading-sm"></span>
              Generating...
            </>
          ) : (
            'Generate script'
          )}
        </button>

        <div role="alert" className="alert text-sm">
          <svg
            xmlns="http://www.w3.org/2000/svg"
            fill="none"
            viewBox="0 0 24 24"
            className="stroke-info h-6 w-6 shrink-0"
          >
            <path
              strokeLinecap="round"
              strokeLinejoin="round"
              strokeWidth="2"
              d="M13 16h-1v-4h-1m1-4h.01M21 12a9 9 0 11-18 0 9 9 0 0118 0z"
            ></path>
          </svg>
          <span>
            The LLM may generate an incorrect YAML. If it fails on Step 2,
            re-generate the script or adding a note to force it to follow YAML
            format.
          </span>
        </div>
      </div>
    </div>
  );
};