Spaces:
Running
Running
File size: 16,329 Bytes
8e0957b a2a351d 8e0957b a2a351d 8e0957b ac91c3d a2a351d ac91c3d 5d4d4d4 8e0957b a2a351d 8e0957b a2a351d 8e0957b 34d0553 0de6d2d 8e0957b 34d0553 8e0957b 0de6d2d 8e0957b 16826f3 34d0553 8e0957b 34f3d3d 42bc647 8e0957b a2a351d 5d4d4d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
// @ts-expect-error this package does not have typing
import TextLineStream from 'textlinestream';
import { Client } from '@gradio/client';
import * as lamejs from '@breezystack/lamejs';
// ponyfill for missing ReadableStream asyncIterator on Safari
import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
import { CONFIG } from '../config';
import { uploadFiles } from '@huggingface/hub';
export const isDev: boolean = import.meta.env.MODE === 'development';
export const testToken: string = import.meta.env.VITE_TEST_TOKEN;
export const isBlogMode: boolean = !!window.location.href.match(/blogmode/);
export const delay = (ms: number) => new Promise((res) => setTimeout(res, ms));
// return URL to the WAV file
export const generateAudio = async (
content: string,
voice: string,
speed: number = 1.1
): Promise<string> => {
const maxRetries = 3;
for (let i = 0; i < maxRetries; i++) {
try {
const client = await Client.connect(CONFIG.ttsSpaceId);
const result = await client.predict('/tts', {
text: content,
voice,
speed,
});
console.log(result.data);
return (result.data as any)[0].url;
} catch (e) {
if (i === maxRetries - 1) {
throw e; // last retry, throw error
}
console.error('Failed to generate audio, retrying...', e);
}
continue;
}
return ''; // should never reach here
};
export const pickRand = <T>(arr: T[]): T => {
return arr[Math.floor(Math.random() * arr.length)];
};
// wrapper for SSE
export async function* getSSEStreamAsync(fetchResponse: Response) {
if (!fetchResponse.body) throw new Error('Response body is empty');
const lines: ReadableStream<string> = fetchResponse.body
.pipeThrough(new TextDecoderStream())
.pipeThrough(new TextLineStream());
// @ts-expect-error asyncIterator complains about type, but it should work
for await (const line of asyncIterator(lines)) {
//if (isDev) console.log({ line });
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
const data = JSON.parse(line.slice(5));
yield data;
} else if (line.startsWith('error:')) {
const data = JSON.parse(line.slice(6));
throw new Error(data.message || 'Unknown error');
}
}
}
export const uploadFileToHub = async (
buf: ArrayBuffer,
filename: string,
repoId: string,
hfToken: string
) => {
await uploadFiles({
accessToken: hfToken,
repo: repoId,
files: [
{
path: filename,
content: new Blob([buf], { type: 'audio/wav' }),
},
],
});
};
/**
* Ok now, most of the functions below are written by ChatGPT using Reasoning mode.
*/
////////////////////////////////////////
// Audio manipulation utils
export const trimSilence = (audioBuffer: AudioBuffer): AudioBuffer => {
const threshold = 0.01; // Amplitude below which a sample is considered silent.
const numChannels = audioBuffer.numberOfChannels;
const totalSamples = audioBuffer.length;
// Helper function to check if a sample at the given index is silent in all channels.
const isSilent = (index: number): boolean => {
for (let channel = 0; channel < numChannels; channel++) {
const channelData = audioBuffer.getChannelData(channel);
if (Math.abs(channelData[index]) > threshold) {
return false;
}
}
return true;
};
// Find the first non-silent sample.
let startSample = 0;
while (startSample < totalSamples && isSilent(startSample)) {
startSample++;
}
// Find the last non-silent sample.
let endSample = totalSamples - 1;
while (endSample >= startSample && isSilent(endSample)) {
endSample--;
}
// If no non-silent samples were found, return an empty AudioBuffer.
if (startSample >= totalSamples || endSample < startSample) {
return new AudioBuffer({
length: 1,
numberOfChannels: numChannels,
sampleRate: audioBuffer.sampleRate,
});
}
const newLength = endSample - startSample + 1;
const newBuffer = new AudioBuffer({
length: newLength,
numberOfChannels: numChannels,
sampleRate: audioBuffer.sampleRate,
});
// Copy the trimmed audio samples from the original buffer to the new buffer.
for (let channel = 0; channel < numChannels; channel++) {
const oldData = audioBuffer.getChannelData(channel);
const newData = newBuffer.getChannelData(channel);
for (let i = 0; i < newLength; i++) {
newData[i] = oldData[startSample + i];
}
}
return newBuffer;
};
export const joinAudio = (
audio1: AudioBuffer,
audio2: AudioBuffer,
gapMilisecs: number,
overlap: 'none' | 'cross-fade' = 'none'
): AudioBuffer => {
const sampleRate = audio1.sampleRate;
const numChannels = audio1.numberOfChannels;
// Ensure both audio buffers are compatible.
if (audio2.sampleRate !== sampleRate) {
throw new Error('Audio buffers must have the same sample rate');
}
if (audio2.numberOfChannels !== numChannels) {
throw new Error('Audio buffers must have the same number of channels');
}
const gapSeconds = gapMilisecs / 1000;
let newLength: number;
if (gapSeconds > 0) {
// Pad with silence: gapSamples of silence in between.
const gapSamples = Math.round(gapSeconds * sampleRate);
newLength = audio1.length + gapSamples + audio2.length;
} else if (gapSeconds === 0) {
// Simply join one after the other.
newLength = audio1.length + audio2.length;
} else {
// gapSeconds < 0 means we blend (overlap) the end of audio1 with the beginning of audio2.
const overlapSamplesRequested = Math.round(-gapSeconds * sampleRate);
// Ensure we don't overlap more than available in either buffer.
const effectiveOverlap = Math.min(
overlapSamplesRequested,
audio1.length,
audio2.length
);
newLength = audio1.length + audio2.length - effectiveOverlap;
}
// Create a new AudioBuffer for the joined result.
const newBuffer = new AudioBuffer({
length: newLength,
numberOfChannels: numChannels,
sampleRate: sampleRate,
});
// Process each channel.
for (let channel = 0; channel < numChannels; channel++) {
const outputData = newBuffer.getChannelData(channel);
const data1 = audio1.getChannelData(channel);
const data2 = audio2.getChannelData(channel);
let offset = 0;
if (gapSeconds < 0) {
// Blend the join section.
const overlapSamplesRequested = Math.round(-gapSeconds * sampleRate);
const effectiveOverlap = Math.min(
overlapSamplesRequested,
audio1.length,
audio2.length
);
// Copy audio1 data up to the start of the overlapping section.
const nonOverlapLength = audio1.length - effectiveOverlap;
outputData.set(data1.subarray(0, nonOverlapLength), offset);
offset += nonOverlapLength;
// Blend overlapping region.
if (overlap === 'cross-fade') {
for (let i = 0; i < effectiveOverlap; i++) {
// Linear crossfade:
const fadeOut = 1 - i / effectiveOverlap;
const fadeIn = i / effectiveOverlap;
outputData[offset + i] =
data1[nonOverlapLength + i] * fadeOut + data2[i] * fadeIn;
}
} else {
for (let i = 0; i < effectiveOverlap; i++) {
outputData[offset + i] = data1[nonOverlapLength + i] + data2[i];
}
}
offset += effectiveOverlap;
// Append remaining audio2 data.
outputData.set(data2.subarray(effectiveOverlap), offset);
} else if (gapSeconds === 0) {
// Directly concatenate: copy audio1 then audio2.
outputData.set(data1, offset);
offset += audio1.length;
outputData.set(data2, offset);
} else {
// gapSeconds > 0: insert silence between audio1 and audio2.
const gapSamples = Math.round(gapSeconds * sampleRate);
outputData.set(data1, offset);
offset += audio1.length;
// Silence: the buffer is initialized with zeros, so we simply move the offset.
offset += gapSamples;
outputData.set(data2, offset);
}
}
return newBuffer;
};
export const addNoise = (
audioBuffer: AudioBuffer,
magnitude: number
): AudioBuffer => {
const { numberOfChannels, sampleRate, length } = audioBuffer;
const newBuffer = new AudioBuffer({
length,
numberOfChannels,
sampleRate,
});
for (let channel = 0; channel < numberOfChannels; channel++) {
const inputData = audioBuffer.getChannelData(channel);
const outputData = newBuffer.getChannelData(channel);
for (let i = 0; i < length; i++) {
// Generate white noise in the range [-magnitude, +magnitude].
const noise = (Math.random() * 2 - 1) * magnitude;
outputData[i] = inputData[i] + noise;
}
}
return newBuffer;
};
export const addSilence = (
audioBuffer: AudioBuffer,
toBeginning: boolean,
durationMilisecs: number
): AudioBuffer => {
// Convert duration from milliseconds to samples.
const sampleRate = audioBuffer.sampleRate;
const silenceSamples = Math.round((durationMilisecs / 1000) * sampleRate);
const numChannels = audioBuffer.numberOfChannels;
const originalLength = audioBuffer.length;
const newLength = originalLength + silenceSamples;
// Create a new AudioBuffer with extra space for the silence.
const newBuffer = new AudioBuffer({
length: newLength,
numberOfChannels: numChannels,
sampleRate: sampleRate,
});
// Process each channel: copy original audio into the correct position.
for (let channel = 0; channel < numChannels; channel++) {
const originalData = audioBuffer.getChannelData(channel);
const newData = newBuffer.getChannelData(channel);
if (toBeginning) {
// Leave the first `silenceSamples` as zeros, then copy the original data.
newData.set(originalData, silenceSamples);
} else {
// Copy the original data first; the remaining samples are already zeros.
newData.set(originalData, 0);
}
}
return newBuffer;
};
////////////////////////////////////////
// Audio formatting utils
export const loadWavAndDecode = async (url: string): Promise<AudioBuffer> => {
const response = await fetch(url);
const arrayBuffer = await response.arrayBuffer();
// @ts-expect-error this is fine
const AudioContext = window.AudioContext || window.webkitAudioContext;
if (!AudioContext) {
throw new Error('AudioContext is not supported on this browser');
}
const audioCtx = new AudioContext();
let audioBuffer = await audioCtx.decodeAudioData(arrayBuffer);
// force mono
if (audioBuffer.numberOfChannels > 1) {
const monoBuffer = new AudioContext().createBuffer(
1,
audioBuffer.length,
audioBuffer.sampleRate
);
const monoData = monoBuffer.getChannelData(0);
for (let i = 0; i < audioBuffer.length; i++) {
let sum = 0;
for (let channel = 0; channel < audioBuffer.numberOfChannels; channel++) {
sum += audioBuffer.getChannelData(channel)[i];
}
monoData[i] = sum / audioBuffer.numberOfChannels;
}
audioBuffer = monoBuffer;
}
return audioBuffer;
};
export function audioBufferToWav(
buffer: AudioBuffer,
options: { float32?: boolean } = {}
): ArrayBuffer {
const numChannels = buffer.numberOfChannels;
const sampleRate = buffer.sampleRate;
const format = options.float32 ? 3 : 1; // 3 = IEEE float, 1 = PCM
const bitDepth = options.float32 ? 32 : 16;
const numSamples = buffer.length;
const headerLength = 44;
const bytesPerSample = bitDepth / 8;
const dataLength = numSamples * numChannels * bytesPerSample;
const bufferLength = headerLength + dataLength;
const arrayBuffer = new ArrayBuffer(bufferLength);
const view = new DataView(arrayBuffer);
let offset = 0;
function writeString(str: string) {
for (let i = 0; i < str.length; i++) {
view.setUint8(offset, str.charCodeAt(i));
offset++;
}
}
// Write WAV header
writeString('RIFF');
view.setUint32(offset, 36 + dataLength, true);
offset += 4;
writeString('WAVE');
writeString('fmt ');
view.setUint32(offset, 16, true);
offset += 4;
view.setUint16(offset, format, true);
offset += 2;
view.setUint16(offset, numChannels, true);
offset += 2;
view.setUint32(offset, sampleRate, true);
offset += 4;
view.setUint32(offset, sampleRate * numChannels * bytesPerSample, true);
offset += 4;
view.setUint16(offset, numChannels * bytesPerSample, true);
offset += 2;
view.setUint16(offset, bitDepth, true);
offset += 2;
writeString('data');
view.setUint32(offset, dataLength, true);
offset += 4;
// Write PCM samples: interleave channels
const channels: Float32Array[] = [];
for (let i = 0; i < numChannels; i++) {
channels.push(buffer.getChannelData(i));
}
for (let i = 0; i < numSamples; i++) {
for (let channel = 0; channel < numChannels; channel++) {
let sample = channels[channel][i];
// Clamp the sample to [-1, 1]
sample = Math.max(-1, Math.min(1, sample));
if (options.float32) {
view.setFloat32(offset, sample, true);
offset += 4;
} else {
// Convert to 16-bit PCM sample
const intSample = sample < 0 ? sample * 0x8000 : sample * 0x7fff;
view.setInt16(offset, intSample, true);
offset += 2;
}
}
}
return arrayBuffer;
}
export const blobFromAudioBuffer = (audioBuffer: AudioBuffer): Blob => {
// Using 16-bit PCM for compatibility.
const wavArrayBuffer = audioBufferToWav(audioBuffer, { float32: false });
return new Blob([wavArrayBuffer], { type: 'audio/wav' });
};
export function audioBufferToMp3(buffer: AudioBuffer): ArrayBuffer {
const numChannels = buffer.numberOfChannels;
const sampleRate = buffer.sampleRate;
const bitRate = 128; // kbps - adjust as desired
// Initialize MP3 encoder.
// Note: If more than 2 channels are present, only the first 2 channels will be used.
const mp3encoder = new lamejs.Mp3Encoder(
numChannels >= 2 ? 2 : 1,
sampleRate,
bitRate
);
const samples = buffer.length;
const chunkSize = 1152; // Frame size for MP3 encoding
// Prepare channel data.
const channels: Float32Array[] = [];
for (let ch = 0; ch < numChannels; ch++) {
channels.push(buffer.getChannelData(ch));
}
const mp3Data: Uint8Array[] = [];
// For mono audio, encode directly.
if (numChannels === 1) {
for (let i = 0; i < samples; i += chunkSize) {
const sampleChunk = channels[0].subarray(i, i + chunkSize);
const int16Buffer = floatTo16BitPCM(sampleChunk);
const mp3buf = mp3encoder.encodeBuffer(int16Buffer);
if (mp3buf.length > 0) {
mp3Data.push(new Uint8Array(mp3buf));
}
}
} else {
// For stereo (or more channels, use first two channels).
const left = channels[0];
const right = channels[1];
for (let i = 0; i < samples; i += chunkSize) {
const leftChunk = left.subarray(i, i + chunkSize);
const rightChunk = right.subarray(i, i + chunkSize);
const leftInt16 = floatTo16BitPCM(leftChunk);
const rightInt16 = floatTo16BitPCM(rightChunk);
const mp3buf = mp3encoder.encodeBuffer(leftInt16, rightInt16);
if (mp3buf.length > 0) {
mp3Data.push(new Uint8Array(mp3buf));
}
}
}
// Flush the encoder to get any remaining MP3 data.
const endBuf = mp3encoder.flush();
if (endBuf.length > 0) {
mp3Data.push(new Uint8Array(endBuf));
}
// Concatenate all MP3 chunks into a single ArrayBuffer.
const totalLength = mp3Data.reduce((acc, curr) => acc + curr.length, 0);
const result = new Uint8Array(totalLength);
let offset = 0;
for (const chunk of mp3Data) {
result.set(chunk, offset);
offset += chunk.length;
}
return result.buffer;
}
/**
* Helper function that converts a Float32Array of PCM samples (range -1..1)
* into an Int16Array (range -32768..32767).
*/
function floatTo16BitPCM(input: Float32Array): Int16Array {
const output = new Int16Array(input.length);
for (let i = 0; i < input.length; i++) {
const s = Math.max(-1, Math.min(1, input[i]));
output[i] = s < 0 ? s * 0x8000 : s * 0x7fff;
}
return output;
}
// clean up filename for saving
export const cleanupFilename = (name: string): string => {
return name.replace(/[^a-zA-Z0-9-_]/g, '_');
};
|