Spaces:
Runtime error
Runtime error
File size: 5,384 Bytes
73825ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import spaces
import tempfile
import os
from pathlib import Path
import SimpleITK as sitk
import numpy as np
import nibabel as nib
from totalsegmentator.python_api import totalsegmentator
import gradio as gr
from segmap import seg_map
import logging
# Logging configuration
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
sample_files = ["ct1.nii.gz", "ct2.nii.gz", "ct3.nii.gz"]
def map_labels(seg_array):
labels = []
count = 0
logger.debug("unique segs:")
logger.debug(str(len(np.unique(seg_array))))
for seg_class in np.unique(seg_array):
if seg_class == 0:
continue
labels.append((seg_array == seg_class, seg_map[seg_class]))
count += 1
return labels
def sitk_to_numpy(img_sitk, norm=False):
img_sitk = sitk.DICOMOrient(img_sitk, "LPS")
img_np = sitk.GetArrayFromImage(img_sitk)
if norm:
min_val, max_val = np.min(img_np), np.max(img_np)
img_np = ((img_np - min_val) / (max_val - min_val)).clip(0, 1) * 255
img_np = img_np.astype(np.uint8)
return img_np
def load_image(path, norm=False):
img_sitk = sitk.ReadImage(path)
return sitk_to_numpy(img_sitk, norm)
def show_img_seg(img_np, seg_np=None, slice_idx=50):
if img_np is None or (isinstance(img_np, list) and len(img_np) == 0):
return None
if isinstance(img_np, list):
img_np = img_np[-1]
slice_pos = int(slice_idx * (img_np.shape[0] / 100))
img_slice = img_np[slice_pos, :, :]
if seg_np is None or (isinstance(seg_np, list) and len(seg_np) == 0):
seg_np = []
else:
if isinstance(seg_np, list):
seg_np = seg_np[-1]
seg_np = map_labels(seg_np[slice_pos, :, :])
return img_slice, seg_np
def load_img_to_state(path, img_state, seg_state):
img_state.clear()
seg_state.clear()
if path:
img_np = load_image(path, norm=True)
img_state.append(img_np)
return None, img_state, seg_state
else:
return None, img_state, seg_state
def save_seg(seg, path):
if Path(path).name in sample_files:
path = os.path.join("output_examples", f"{Path(Path(path).stem).stem}_seg.nii.gz")
else:
sitk.WriteImage(seg, path)
return path
@spaces.GPU(duration=150)
def run_inference(path):
with tempfile.TemporaryDirectory() as temp_dir:
input_nib = nib.load(path)
output_nib = totalsegmentator(input_nib, fast=True)
output_path = os.path.join(temp_dir, "totalseg_output.nii.gz")
nib.save(output_nib, output_path)
seg_sitk = sitk.ReadImage(output_path)
return seg_sitk
def inference_wrapper(input_file, img_state, seg_state, slice_slider=50):
file_name = Path(input_file).name
if file_name in sample_files:
seg_sitk = sitk.ReadImage(os.path.join("output_examples", f"{Path(Path(file_name).stem).stem}_seg.nii.gz"))
else:
seg_sitk = run_inference(input_file.name)
seg_path = save_seg(seg_sitk, input_file.name)
seg_state.append(sitk_to_numpy(seg_sitk))
if not img_state:
img_sitk = sitk.ReadImage(input_file.name)
img_state.append(sitk_to_numpy(img_sitk))
return show_img_seg(img_state[-1], seg_state[-1], slice_slider), seg_state, seg_path
with gr.Blocks(title="TotalSegmentator") as interface:
gr.Markdown("# TotalSegmentator: Segmentation of 117 Classes in CT and MR Images")
gr.Markdown("""
- **GitHub:** https://github.com/wasserth/TotalSegmentator
- **Please Note:** This tool is intended for research purposes only and can segment 117 classes in CT/MRI images
- Supports both CT and MR imaging modalities
- Credit: adapted from `DiGuaQiu/MRSegmentator-Gradio`
""")
img_state = gr.State([])
seg_state = gr.State([])
with gr.Accordion(label='Upload CT Scan (nifti file) then click on Generate Segmentation to run TotalSegmentator', open=True):
with gr.Row():
with gr.Column():
file_input = gr.File(
type="filepath", label="Upload a CT or MR Image (.nii/.nii.gz)", file_types=[".gz", ".nii.gz"]
)
gr.Examples(["input_examples/" + example for example in sample_files], file_input)
with gr.Row():
infer_button = gr.Button("Generate Segmentations", variant="primary")
clear_button = gr.ClearButton()
with gr.Column():
slice_slider = gr.Slider(1, 100, value=50, step=2, label="Select (relative) Slice")
img_viewer = gr.AnnotatedImage(label="Image Viewer")
download_seg = gr.File(label="Download Segmentation", interactive=False)
file_input.change(
load_img_to_state,
inputs=[file_input, img_state, seg_state],
outputs=[img_viewer, img_state, seg_state],
)
slice_slider.change(show_img_seg, inputs=[img_state, seg_state, slice_slider], outputs=[img_viewer])
infer_button.click(
inference_wrapper,
inputs=[file_input, img_state, seg_state, slice_slider],
outputs=[img_viewer, seg_state, download_seg],
)
clear_button.add([file_input, img_viewer, img_state, seg_state, download_seg])
if __name__ == "__main__":
interface.queue()
interface.launch(debug=True) |