File size: 1,149 Bytes
e511180
d6e1a9f
e511180
35c90c9
cdf05c5
d6e1a9f
1917902
d6e1a9f
1917902
ab26a20
 
 
57826c1
 
ab26a20
57826c1
b34763a
57826c1
 
 
 
35c90c9
d00ecca
 
 
35c90c9
1917902
51c33c0
35c90c9
 
51c33c0
35c90c9
d00ecca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from transformers import AutoProcessor, SeamlessM4TModel

st.title("Ed's working Hot Dog? Or Not!!!!!?")

processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-large")

model = SeamlessM4TModel.from_pretrained("facebook/hf-seamless-m4t-large")

if "texttotranslate" not in st.session_state:
    st.session_state.texttotranslate = ""

def submit():
	st.write('method')
	mytitle  =  st.session_state.texttotranslate
	text_inputs = processor(text = mytitle, src_lang="eng", return_tensors="pt")
	output_tokens = model.generate(**text_inputs, tgt_lang="fra", generate_speech=False)
	translated_text_from_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
	st.write(translated_text_from_text)


st.text_input('hello', "fat cats", on_change=submit)



#text_inputs = processor(text = title, src_lang="eng", return_tensors="pt")

# from text
#output_tokens = model.generate(**text_inputs, tgt_lang="fra", generate_speech=False)
#translated_text_from_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)

#st.write(translated_text_from_text)
st.write("fool me")