Spaces:
Runtime error
Runtime error
Mohammaderfan koupaei
commited on
Commit
·
937a410
1
Parent(s):
3ab6d8e
second
Browse files- app.py +74 -45
- requirements.txt +1 -0
- scripts/config/config.py +4 -13
- scripts/training/trainer.py +128 -104
app.py
CHANGED
@@ -1,44 +1,51 @@
|
|
1 |
import sys
|
2 |
import logging
|
3 |
from pathlib import Path
|
|
|
|
|
4 |
from transformers import set_seed
|
5 |
|
|
|
|
|
|
|
|
|
6 |
# Import the necessary modules from your project
|
7 |
-
sys.path.append("./scripts")
|
8 |
from scripts.models.model import NarrativeClassifier
|
9 |
from scripts.models.dataset import NarrativeDataset
|
10 |
from scripts.config.config import TrainingConfig
|
11 |
-
from scripts.data_processing.
|
12 |
from scripts.training.trainer import NarrativeTrainer
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def main():
|
15 |
# Set up logging
|
16 |
-
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
logger.info("Initializing training process...")
|
19 |
-
import os
|
20 |
-
|
21 |
|
22 |
-
# Set
|
23 |
-
logging.basicConfig(level=logging.INFO)
|
24 |
-
logger = logging.getLogger(__name__)
|
25 |
-
logger.info("Initializing training process...")
|
26 |
-
import os
|
27 |
-
import spacy
|
28 |
-
|
29 |
-
# Download and load SpaCy model dynamically
|
30 |
-
try:
|
31 |
-
spacy.load("en_core_web_sm")
|
32 |
-
except OSError:
|
33 |
-
logger.info("Downloading SpaCy model 'en_core_web_sm'...")
|
34 |
-
os.system("python -m spacy download en_core_web_sm")
|
35 |
-
|
36 |
-
# Set a random seed for reproducibility
|
37 |
set_seed(42)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Load and process the dataset
|
40 |
-
annotations_file = "./data/subtask-2-annotations.txt"
|
41 |
-
raw_dir = "./data/raw"
|
42 |
logger.info("Loading and processing dataset...")
|
43 |
|
44 |
processor = AdvancedNarrativeProcessor(
|
@@ -47,41 +54,63 @@ def main():
|
|
47 |
)
|
48 |
processed_data = processor.load_and_process_data()
|
49 |
|
50 |
-
#
|
51 |
train_dataset = NarrativeDataset(processed_data['train'])
|
52 |
val_dataset = NarrativeDataset(processed_data['val'])
|
53 |
logger.info(f"Loaded dataset with {len(train_dataset)} training samples and {len(val_dataset)} validation samples.")
|
54 |
|
55 |
-
# Initialize
|
56 |
logger.info("Initializing the model...")
|
57 |
-
model = NarrativeClassifier(
|
|
|
|
|
|
|
58 |
|
59 |
-
# Define training configuration
|
60 |
config = TrainingConfig(
|
61 |
-
output_dir=Path("./output"),
|
62 |
num_epochs=5,
|
63 |
-
batch_size=
|
64 |
learning_rate=2e-5,
|
65 |
warmup_ratio=0.1,
|
66 |
weight_decay=0.01,
|
67 |
max_grad_norm=1.0,
|
68 |
-
eval_steps=
|
69 |
-
save_steps=
|
|
|
|
|
|
|
70 |
)
|
71 |
-
logger.info(
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
-
main()
|
|
|
1 |
import sys
|
2 |
import logging
|
3 |
from pathlib import Path
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
from transformers import set_seed
|
7 |
|
8 |
+
# Set environment variables for memory optimization
|
9 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
10 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
11 |
+
|
12 |
# Import the necessary modules from your project
|
13 |
+
sys.path.append("./scripts")
|
14 |
from scripts.models.model import NarrativeClassifier
|
15 |
from scripts.models.dataset import NarrativeDataset
|
16 |
from scripts.config.config import TrainingConfig
|
17 |
+
from scripts.data_processing.advanced_preprocessor import AdvancedNarrativeProcessor
|
18 |
from scripts.training.trainer import NarrativeTrainer
|
19 |
|
20 |
+
def setup_logging():
|
21 |
+
"""Setup logging configuration"""
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.INFO,
|
24 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
25 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
26 |
+
)
|
27 |
+
return logging.getLogger(__name__)
|
28 |
+
|
29 |
def main():
|
30 |
# Set up logging
|
31 |
+
logger = setup_logging()
|
|
|
32 |
logger.info("Initializing training process...")
|
|
|
|
|
33 |
|
34 |
+
# Set random seeds for reproducibility
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
set_seed(42)
|
36 |
+
torch.manual_seed(42)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
torch.cuda.manual_seed_all(42)
|
39 |
+
|
40 |
+
# Clear GPU cache if available
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
torch.cuda.empty_cache()
|
43 |
+
logger.info(f"CUDA available. Using GPU: {torch.cuda.get_device_name(0)}")
|
44 |
+
logger.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
45 |
|
46 |
# Load and process the dataset
|
47 |
+
annotations_file = "./data/subtask-2-annotations.txt"
|
48 |
+
raw_dir = "./data/raw"
|
49 |
logger.info("Loading and processing dataset...")
|
50 |
|
51 |
processor = AdvancedNarrativeProcessor(
|
|
|
54 |
)
|
55 |
processed_data = processor.load_and_process_data()
|
56 |
|
57 |
+
# Create datasets
|
58 |
train_dataset = NarrativeDataset(processed_data['train'])
|
59 |
val_dataset = NarrativeDataset(processed_data['val'])
|
60 |
logger.info(f"Loaded dataset with {len(train_dataset)} training samples and {len(val_dataset)} validation samples.")
|
61 |
|
62 |
+
# Initialize model
|
63 |
logger.info("Initializing the model...")
|
64 |
+
model = NarrativeClassifier(
|
65 |
+
num_labels=train_dataset.get_num_labels(),
|
66 |
+
model_name="microsoft/deberta-v3-large"
|
67 |
+
)
|
68 |
|
69 |
+
# Define optimized training configuration
|
70 |
config = TrainingConfig(
|
71 |
+
output_dir=Path("./output"),
|
72 |
num_epochs=5,
|
73 |
+
batch_size=4, # Reduced batch size for memory
|
74 |
learning_rate=2e-5,
|
75 |
warmup_ratio=0.1,
|
76 |
weight_decay=0.01,
|
77 |
max_grad_norm=1.0,
|
78 |
+
eval_steps=50,
|
79 |
+
save_steps=50,
|
80 |
+
fp16=True, # Enable mixed precision
|
81 |
+
gradient_accumulation_steps=4, # Gradient accumulation
|
82 |
+
max_length=256 # Reduced sequence length
|
83 |
)
|
84 |
+
logger.info("Training configuration:")
|
85 |
+
for key, value in vars(config).items():
|
86 |
+
logger.info(f" {key}: {value}")
|
87 |
|
88 |
+
try:
|
89 |
+
# Initialize trainer
|
90 |
+
trainer = NarrativeTrainer(
|
91 |
+
model=model,
|
92 |
+
train_dataset=train_dataset,
|
93 |
+
val_dataset=val_dataset,
|
94 |
+
config=config
|
95 |
+
)
|
96 |
+
|
97 |
+
# Start training
|
98 |
+
logger.info("Starting the training process...")
|
99 |
+
history = trainer.train()
|
100 |
+
|
101 |
+
# Log final metrics
|
102 |
+
logger.info("Training completed successfully!")
|
103 |
+
logger.info("Final metrics:")
|
104 |
+
logger.info(f" Best validation F1: {trainer.best_val_f1:.4f}")
|
105 |
+
logger.info(f" Final training loss: {history['train_loss'][-1]:.4f}")
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Training failed with error: {str(e)}")
|
109 |
+
raise
|
110 |
+
finally:
|
111 |
+
# Clean up
|
112 |
+
if torch.cuda.is_available():
|
113 |
+
torch.cuda.empty_cache()
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
main()
|
requirements.txt
CHANGED
@@ -8,3 +8,4 @@ sentencepiece
|
|
8 |
pandas
|
9 |
numpy
|
10 |
spacy
|
|
|
|
8 |
pandas
|
9 |
numpy
|
10 |
spacy
|
11 |
+
accelerate
|
scripts/config/config.py
CHANGED
@@ -12,11 +12,14 @@ class TrainingConfig:
|
|
12 |
|
13 |
# Training parameters
|
14 |
num_epochs: int = 5
|
15 |
-
batch_size: int = 8
|
16 |
learning_rate: float = 2e-5
|
17 |
warmup_ratio: float = 0.1
|
18 |
weight_decay: float = 0.01
|
19 |
max_grad_norm: float = 1.0
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Data parameters
|
22 |
max_length: int = 512
|
@@ -45,15 +48,3 @@ if __name__ == "__main__":
|
|
45 |
print(f"Learning rate: {default_config.learning_rate}")
|
46 |
print(f"Device: {default_config.device}")
|
47 |
|
48 |
-
# Create custom config
|
49 |
-
custom_config = TrainingConfig(
|
50 |
-
batch_size=16,
|
51 |
-
num_epochs=10,
|
52 |
-
learning_rate=1e-5
|
53 |
-
)
|
54 |
-
|
55 |
-
print("\n=== Custom Configuration ===")
|
56 |
-
print(f"Model name: {custom_config.model_name}") # Uses default
|
57 |
-
print(f"Batch size: {custom_config.batch_size}") # Customized
|
58 |
-
print(f"Learning rate: {custom_config.learning_rate}") # Customized
|
59 |
-
print(f"Number of epochs: {custom_config.num_epochs}") # Customized
|
|
|
12 |
|
13 |
# Training parameters
|
14 |
num_epochs: int = 5
|
|
|
15 |
learning_rate: float = 2e-5
|
16 |
warmup_ratio: float = 0.1
|
17 |
weight_decay: float = 0.01
|
18 |
max_grad_norm: float = 1.0
|
19 |
+
gradient_accumulation_steps: int = 4
|
20 |
+
fp16: bool = True # Enable mixed precision training
|
21 |
+
max_length: int = 256 # Reduce from 512
|
22 |
+
batch_size: int = 4 # Reduce from 8
|
23 |
|
24 |
# Data parameters
|
25 |
max_length: int = 512
|
|
|
48 |
print(f"Learning rate: {default_config.learning_rate}")
|
49 |
print(f"Device: {default_config.device}")
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/training/trainer.py
CHANGED
@@ -8,12 +8,10 @@ import numpy as np
|
|
8 |
from sklearn.metrics import f1_score, precision_score, recall_score
|
9 |
import json
|
10 |
from datetime import datetime
|
11 |
-
|
12 |
|
13 |
class NarrativeTrainer:
|
14 |
-
"""
|
15 |
-
Comprehensive trainer for narrative classification with GPU support.
|
16 |
-
"""
|
17 |
def __init__(
|
18 |
self,
|
19 |
model,
|
@@ -21,29 +19,43 @@ class NarrativeTrainer:
|
|
21 |
val_dataset,
|
22 |
config,
|
23 |
):
|
|
|
24 |
self.setup_logging()
|
25 |
self.logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
#
|
|
|
|
|
|
|
28 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
self.logger.info(f"Using device: {self.device}")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
# Initialize model and components
|
32 |
self.model = model.to(self.device)
|
33 |
self.train_dataset = train_dataset
|
34 |
self.val_dataset = val_dataset
|
35 |
-
self.config = config
|
36 |
|
|
|
37 |
self.current_epoch = 0
|
38 |
self.global_step = 0
|
39 |
self.best_val_f1 = 0.0
|
40 |
|
|
|
|
|
|
|
|
|
41 |
self.setup_training()
|
42 |
|
|
|
43 |
self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
44 |
self.output_dir = Path(config.output_dir) / self.timestamp
|
45 |
self.output_dir.mkdir(parents=True, exist_ok=True)
|
46 |
|
|
|
47 |
self.save_config()
|
48 |
self.history = {
|
49 |
'train_loss': [],
|
@@ -54,6 +66,7 @@ class NarrativeTrainer:
|
|
54 |
}
|
55 |
|
56 |
def setup_logging(self):
|
|
|
57 |
logging.basicConfig(
|
58 |
level=logging.INFO,
|
59 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
@@ -61,27 +74,33 @@ class NarrativeTrainer:
|
|
61 |
)
|
62 |
|
63 |
def setup_training(self):
|
64 |
-
"""Initialize
|
|
|
65 |
self.train_loader = DataLoader(
|
66 |
self.train_dataset,
|
67 |
batch_size=self.config.batch_size,
|
68 |
shuffle=True,
|
69 |
-
num_workers=4
|
|
|
70 |
)
|
71 |
|
72 |
self.val_loader = DataLoader(
|
73 |
self.val_dataset,
|
74 |
batch_size=self.config.batch_size,
|
75 |
-
num_workers=4
|
|
|
76 |
)
|
77 |
|
|
|
78 |
self.optimizer = torch.optim.AdamW(
|
79 |
self.model.parameters(),
|
80 |
lr=self.config.learning_rate,
|
81 |
weight_decay=self.config.weight_decay
|
82 |
)
|
83 |
|
84 |
-
|
|
|
|
|
85 |
num_warmup_steps = int(num_training_steps * self.config.warmup_ratio)
|
86 |
|
87 |
self.scheduler = get_linear_schedule_with_warmup(
|
@@ -93,66 +112,106 @@ class NarrativeTrainer:
|
|
93 |
self.criterion = torch.nn.BCEWithLogitsLoss()
|
94 |
|
95 |
def save_config(self):
|
96 |
-
"""Save training configuration
|
97 |
config_dict = {k: str(v) for k, v in vars(self.config).items()}
|
98 |
config_path = self.output_dir / 'config.json'
|
99 |
with open(config_path, 'w') as f:
|
100 |
json.dump(config_dict, f, indent=4)
|
101 |
|
102 |
def train_epoch(self):
|
103 |
-
"""Train
|
104 |
self.model.train()
|
105 |
total_loss = 0
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
loss.backward()
|
120 |
|
121 |
-
|
122 |
-
self.
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
total_loss += loss.item()
|
126 |
-
pbar.set_postfix({'loss': total_loss / (pbar.n + 1)})
|
127 |
self.global_step += 1
|
128 |
|
|
|
129 |
if self.global_step % self.config.eval_steps == 0:
|
130 |
self.evaluate()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
return total_loss / len(self.train_loader)
|
133 |
|
134 |
@torch.no_grad()
|
135 |
def evaluate(self):
|
136 |
-
"""Evaluate model
|
137 |
self.model.eval()
|
138 |
total_loss = 0
|
139 |
all_preds, all_labels = [], []
|
140 |
|
141 |
for batch in tqdm(self.val_loader, desc="Evaluating"):
|
142 |
-
batch = {k: v.to(self.device) for k, v in batch.items()}
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
|
149 |
-
loss = self.criterion(outputs, batch['labels'])
|
150 |
total_loss += loss.item()
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
|
|
156 |
all_preds = np.concatenate(all_preds, axis=0)
|
157 |
all_labels = np.concatenate(all_labels, axis=0)
|
158 |
|
@@ -172,11 +231,13 @@ class NarrativeTrainer:
|
|
172 |
return metrics
|
173 |
|
174 |
def save_model(self, filename: str, metrics: dict = None):
|
|
|
175 |
save_path = self.output_dir / filename
|
176 |
torch.save({
|
177 |
'model_state_dict': self.model.state_dict(),
|
178 |
'optimizer_state_dict': self.optimizer.state_dict(),
|
179 |
'scheduler_state_dict': self.scheduler.state_dict(),
|
|
|
180 |
'epoch': self.current_epoch,
|
181 |
'global_step': self.global_step,
|
182 |
'best_val_f1': self.best_val_f1,
|
@@ -185,71 +246,34 @@ class NarrativeTrainer:
|
|
185 |
self.logger.info(f"Model saved to {save_path}")
|
186 |
|
187 |
def train(self):
|
188 |
-
"""Run training
|
189 |
self.logger.info("Starting training...")
|
190 |
-
|
191 |
-
self.
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
self.history
|
197 |
-
self.history['val_f1'].append(val_metrics['f1'])
|
198 |
-
self.history['val_precision'].append(val_metrics['precision'])
|
199 |
-
self.history['val_recall'].append(val_metrics['recall'])
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
json.dump(self.history, f, indent=4)
|
205 |
-
|
206 |
-
self.logger.info("Training completed!")
|
207 |
-
return self.history
|
208 |
-
|
209 |
-
|
210 |
-
if __name__ == "__main__":
|
211 |
-
import sys
|
212 |
-
sys.path.append("../../")
|
213 |
-
from scripts.models.model import NarrativeClassifier
|
214 |
-
from scripts.models.dataset import NarrativeDataset
|
215 |
-
from scripts.config.config import TrainingConfig
|
216 |
-
from scripts.data_processing.data_preparation import AdvancedNarrativeProcessor
|
217 |
-
|
218 |
-
# Initialize training configuration
|
219 |
-
config = TrainingConfig(
|
220 |
-
output_dir=Path("./output"),
|
221 |
-
num_epochs=5,
|
222 |
-
batch_size=32,
|
223 |
-
learning_rate=5e-5,
|
224 |
-
weight_decay=0.01,
|
225 |
-
warmup_ratio=0.1,
|
226 |
-
max_grad_norm=1.0,
|
227 |
-
eval_steps=100
|
228 |
-
)
|
229 |
-
|
230 |
-
# Load and process data
|
231 |
-
processor = AdvancedNarrativeProcessor(
|
232 |
-
annotations_file="../../data/subtask-2-annotations.txt",
|
233 |
-
raw_dir="../../data/raw"
|
234 |
-
)
|
235 |
-
processed_data = processor.load_and_process_data()
|
236 |
-
|
237 |
-
# Create datasets
|
238 |
-
train_dataset = NarrativeDataset(processed_data['train'])
|
239 |
-
val_dataset = NarrativeDataset(processed_data['val'])
|
240 |
-
|
241 |
-
# Initialize model
|
242 |
-
model = NarrativeClassifier(num_labels=train_dataset.get_num_labels())
|
243 |
-
|
244 |
-
# Initialize trainer
|
245 |
-
trainer = NarrativeTrainer(
|
246 |
-
model=model,
|
247 |
-
train_dataset=train_dataset,
|
248 |
-
val_dataset=val_dataset,
|
249 |
-
config=config
|
250 |
-
)
|
251 |
-
|
252 |
-
# Start full training
|
253 |
-
print("\n=== Starting Training ===")
|
254 |
-
trainer.train()
|
255 |
-
print("\nTraining completed successfully!")
|
|
|
8 |
from sklearn.metrics import f1_score, precision_score, recall_score
|
9 |
import json
|
10 |
from datetime import datetime
|
11 |
+
from torch.cuda.amp import autocast, GradScaler
|
12 |
|
13 |
class NarrativeTrainer:
|
14 |
+
"""Comprehensive trainer for narrative classification with GPU memory optimizations"""
|
|
|
|
|
15 |
def __init__(
|
16 |
self,
|
17 |
model,
|
|
|
19 |
val_dataset,
|
20 |
config,
|
21 |
):
|
22 |
+
# Setup basics
|
23 |
self.setup_logging()
|
24 |
self.logger = logging.getLogger(__name__)
|
25 |
|
26 |
+
# Store config first
|
27 |
+
self.config = config
|
28 |
+
|
29 |
+
# Setup device
|
30 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
self.logger.info(f"Using device: {self.device}")
|
32 |
|
33 |
+
# Clear GPU cache if using CUDA
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
torch.cuda.empty_cache()
|
36 |
+
|
37 |
# Initialize model and components
|
38 |
self.model = model.to(self.device)
|
39 |
self.train_dataset = train_dataset
|
40 |
self.val_dataset = val_dataset
|
|
|
41 |
|
42 |
+
# Initialize training state
|
43 |
self.current_epoch = 0
|
44 |
self.global_step = 0
|
45 |
self.best_val_f1 = 0.0
|
46 |
|
47 |
+
# Initialize mixed precision training
|
48 |
+
self.scaler = GradScaler(enabled=self.config.fp16)
|
49 |
+
|
50 |
+
# Setup training components
|
51 |
self.setup_training()
|
52 |
|
53 |
+
# Setup output directory
|
54 |
self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
55 |
self.output_dir = Path(config.output_dir) / self.timestamp
|
56 |
self.output_dir.mkdir(parents=True, exist_ok=True)
|
57 |
|
58 |
+
# Save config and initialize history
|
59 |
self.save_config()
|
60 |
self.history = {
|
61 |
'train_loss': [],
|
|
|
66 |
}
|
67 |
|
68 |
def setup_logging(self):
|
69 |
+
"""Initialize logging configuration"""
|
70 |
logging.basicConfig(
|
71 |
level=logging.INFO,
|
72 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
|
74 |
)
|
75 |
|
76 |
def setup_training(self):
|
77 |
+
"""Initialize training components with memory optimizations"""
|
78 |
+
# Create dataloaders
|
79 |
self.train_loader = DataLoader(
|
80 |
self.train_dataset,
|
81 |
batch_size=self.config.batch_size,
|
82 |
shuffle=True,
|
83 |
+
num_workers=4,
|
84 |
+
pin_memory=True # Optimize data transfer to GPU
|
85 |
)
|
86 |
|
87 |
self.val_loader = DataLoader(
|
88 |
self.val_dataset,
|
89 |
batch_size=self.config.batch_size,
|
90 |
+
num_workers=4,
|
91 |
+
pin_memory=True
|
92 |
)
|
93 |
|
94 |
+
# Setup optimizer
|
95 |
self.optimizer = torch.optim.AdamW(
|
96 |
self.model.parameters(),
|
97 |
lr=self.config.learning_rate,
|
98 |
weight_decay=self.config.weight_decay
|
99 |
)
|
100 |
|
101 |
+
# Setup scheduler with gradient accumulation steps
|
102 |
+
num_update_steps_per_epoch = len(self.train_loader) // self.config.gradient_accumulation_steps
|
103 |
+
num_training_steps = num_update_steps_per_epoch * self.config.num_epochs
|
104 |
num_warmup_steps = int(num_training_steps * self.config.warmup_ratio)
|
105 |
|
106 |
self.scheduler = get_linear_schedule_with_warmup(
|
|
|
112 |
self.criterion = torch.nn.BCEWithLogitsLoss()
|
113 |
|
114 |
def save_config(self):
|
115 |
+
"""Save training configuration"""
|
116 |
config_dict = {k: str(v) for k, v in vars(self.config).items()}
|
117 |
config_path = self.output_dir / 'config.json'
|
118 |
with open(config_path, 'w') as f:
|
119 |
json.dump(config_dict, f, indent=4)
|
120 |
|
121 |
def train_epoch(self):
|
122 |
+
"""Train for one epoch with memory optimizations"""
|
123 |
self.model.train()
|
124 |
total_loss = 0
|
125 |
+
self.optimizer.zero_grad()
|
126 |
|
127 |
+
pbar = tqdm(enumerate(self.train_loader),
|
128 |
+
total=len(self.train_loader),
|
129 |
+
desc=f'Epoch {self.current_epoch + 1}/{self.config.num_epochs}')
|
130 |
+
|
131 |
+
for step, batch in pbar:
|
132 |
+
# Move batch to device
|
133 |
+
batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
|
134 |
|
135 |
+
# Mixed precision forward pass
|
136 |
+
with autocast(enabled=self.config.fp16):
|
137 |
+
outputs = self.model(
|
138 |
+
input_ids=batch['input_ids'],
|
139 |
+
attention_mask=batch['attention_mask'],
|
140 |
+
features=batch['features']
|
141 |
+
)
|
142 |
+
loss = self.criterion(outputs, batch['labels'])
|
143 |
+
loss = loss / self.config.gradient_accumulation_steps
|
144 |
|
145 |
+
# Scaled backward pass
|
146 |
+
self.scaler.scale(loss).backward()
|
147 |
|
148 |
+
# Update weights if we've accumulated enough gradients
|
149 |
+
if (step + 1) % self.config.gradient_accumulation_steps == 0:
|
150 |
+
self.scaler.unscale_(self.optimizer)
|
151 |
+
torch.nn.utils.clip_grad_norm_(
|
152 |
+
self.model.parameters(),
|
153 |
+
self.config.max_grad_norm
|
154 |
+
)
|
155 |
+
|
156 |
+
self.scaler.step(self.optimizer)
|
157 |
+
self.scaler.update()
|
158 |
+
self.scheduler.step()
|
159 |
+
self.optimizer.zero_grad()
|
160 |
+
|
161 |
+
# Update metrics
|
162 |
+
total_loss += loss.item() * self.config.gradient_accumulation_steps
|
163 |
+
avg_loss = total_loss / (step + 1)
|
164 |
+
pbar.set_postfix({'loss': f'{avg_loss:.4f}'})
|
165 |
|
|
|
|
|
166 |
self.global_step += 1
|
167 |
|
168 |
+
# Evaluate if needed
|
169 |
if self.global_step % self.config.eval_steps == 0:
|
170 |
self.evaluate()
|
171 |
+
|
172 |
+
# Clear memory periodically
|
173 |
+
if step % 10 == 0:
|
174 |
+
torch.cuda.empty_cache()
|
175 |
+
|
176 |
+
# Clear unnecessary tensors
|
177 |
+
del outputs
|
178 |
+
del loss
|
179 |
|
180 |
return total_loss / len(self.train_loader)
|
181 |
|
182 |
@torch.no_grad()
|
183 |
def evaluate(self):
|
184 |
+
"""Evaluate model with memory optimizations"""
|
185 |
self.model.eval()
|
186 |
total_loss = 0
|
187 |
all_preds, all_labels = [], []
|
188 |
|
189 |
for batch in tqdm(self.val_loader, desc="Evaluating"):
|
190 |
+
batch = {k: v.to(self.device, non_blocking=True) for k, v in batch.items()}
|
191 |
+
|
192 |
+
with autocast(enabled=self.config.fp16):
|
193 |
+
outputs = self.model(
|
194 |
+
input_ids=batch['input_ids'],
|
195 |
+
attention_mask=batch['attention_mask'],
|
196 |
+
features=batch['features']
|
197 |
+
)
|
198 |
+
loss = self.criterion(outputs, batch['labels'])
|
199 |
|
|
|
200 |
total_loss += loss.item()
|
201 |
|
202 |
+
# CPU computations for predictions
|
203 |
+
preds = (torch.sigmoid(outputs) > 0.5).cpu().numpy()
|
204 |
+
labels = batch['labels'].cpu().numpy()
|
205 |
+
|
206 |
+
all_preds.append(preds)
|
207 |
+
all_labels.append(labels)
|
208 |
+
|
209 |
+
# Clear memory
|
210 |
+
del outputs
|
211 |
+
del loss
|
212 |
+
torch.cuda.empty_cache()
|
213 |
|
214 |
+
# Compute metrics
|
215 |
all_preds = np.concatenate(all_preds, axis=0)
|
216 |
all_labels = np.concatenate(all_labels, axis=0)
|
217 |
|
|
|
231 |
return metrics
|
232 |
|
233 |
def save_model(self, filename: str, metrics: dict = None):
|
234 |
+
"""Save model checkpoint"""
|
235 |
save_path = self.output_dir / filename
|
236 |
torch.save({
|
237 |
'model_state_dict': self.model.state_dict(),
|
238 |
'optimizer_state_dict': self.optimizer.state_dict(),
|
239 |
'scheduler_state_dict': self.scheduler.state_dict(),
|
240 |
+
'scaler_state_dict': self.scaler.state_dict(),
|
241 |
'epoch': self.current_epoch,
|
242 |
'global_step': self.global_step,
|
243 |
'best_val_f1': self.best_val_f1,
|
|
|
246 |
self.logger.info(f"Model saved to {save_path}")
|
247 |
|
248 |
def train(self):
|
249 |
+
"""Run complete training loop"""
|
250 |
self.logger.info("Starting training...")
|
251 |
+
try:
|
252 |
+
for epoch in range(self.config.num_epochs):
|
253 |
+
self.current_epoch = epoch
|
254 |
+
self.logger.info(f"Starting epoch {epoch + 1}/{self.config.num_epochs}")
|
255 |
+
|
256 |
+
train_loss = self.train_epoch()
|
257 |
+
self.history['train_loss'].append(train_loss)
|
258 |
+
|
259 |
+
val_metrics = self.evaluate()
|
260 |
+
self.history['val_loss'].append(val_metrics['loss'])
|
261 |
+
self.history['val_f1'].append(val_metrics['f1'])
|
262 |
+
self.history['val_precision'].append(val_metrics['precision'])
|
263 |
+
self.history['val_recall'].append(val_metrics['recall'])
|
264 |
+
|
265 |
+
self.save_model(f'checkpoint_epoch_{epoch+1}.pt', val_metrics)
|
266 |
+
|
267 |
+
# Save training history
|
268 |
+
history_path = self.output_dir / 'history.json'
|
269 |
+
with open(history_path, 'w') as f:
|
270 |
+
json.dump(self.history, f, indent=4)
|
271 |
+
|
272 |
+
self.logger.info(f"Epoch {epoch + 1} completed. Train loss: {train_loss:.4f}")
|
273 |
|
274 |
+
self.logger.info("Training completed successfully!")
|
275 |
+
return self.history
|
|
|
|
|
|
|
276 |
|
277 |
+
except Exception as e:
|
278 |
+
self.logger.error(f"Training failed with error: {str(e)}")
|
279 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|