Spaces:
Runtime error
Runtime error
File size: 10,645 Bytes
fb2cd67 6b418f0 fb2cd67 6b418f0 fb2cd67 6b418f0 fb2cd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple
import re
import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import StratifiedKFold
import torch
from transformers import AutoTokenizer
import logging
from tqdm import tqdm
class AdvancedNarrativeProcessor:
def __init__(self, annotations_file: str, raw_dir: str, model_name: str = "microsoft/deberta-v3-large"):
self.setup_logging()
self.logger = logging.getLogger(__name__)
self.annotations_file = Path(annotations_file)
self.raw_dir = Path(raw_dir)
self.model_name = model_name
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize SpaCy
self.nlp = spacy.load("en_core_web_sm") # Download it with `python -m spacy download en_core_web_sm`
self.stopwords = spacy.lang.en.stop_words.STOP_WORDS
# Initialize state
self.df = None
self.processed_data = None
self.label_encodings = None
self.tfidf_vectorizer = None
def setup_logging(self):
"""Set up logging configuration"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
def load_and_process_data(self) -> Dict:
"""Main processing pipeline"""
self.logger.info("Starting data processing pipeline...")
# 1. Load Raw Data
self.load_data()
# 2. Process Text and Labels
processed_articles = self.process_all_articles()
# 3. Engineer Features
self.add_features(processed_articles)
# 4. Create Data Splits
train_data, val_data = self.create_splits(processed_articles)
# 5. Prepare Model Inputs
train_inputs = self.prepare_model_inputs(train_data)
val_inputs = self.prepare_model_inputs(val_data)
self.logger.info("Data processing complete!")
return {
'train': train_inputs,
'val': val_inputs,
'label_encodings': self.label_encodings,
'stats': self.get_statistics()
}
def load_data(self):
"""Load and prepare the annotation data"""
self.logger.info(f"Loading annotations from {self.annotations_file}")
# Load annotations file
self.df = pd.read_csv(
self.annotations_file,
sep='\t',
names=['article_id', 'narratives', 'subnarratives']
)
# Create label encodings
all_subnarratives = set()
for subnarrs in self.df['subnarratives'].str.split(';'):
all_subnarratives.update(subnarrs)
self.label_encodings = {
label: idx for idx, label in enumerate(sorted(all_subnarratives))
}
self.logger.info(f"Loaded {len(self.df)} articles with {len(self.label_encodings)} unique labels")
def read_article(self, article_id: str) -> str:
"""Read article content from file"""
try:
with open(self.raw_dir / article_id, 'r', encoding='utf-8') as f:
return f.read()
except Exception as e:
self.logger.error(f"Error reading article {article_id}: {e}")
return ""
def process_text(self, text: str) -> str:
"""Enhanced text processing"""
# Remove URLs and emails
text = re.sub(r'http\S+|www\S+|\S+@\S+', '', text)
# Normalize whitespace
text = ' '.join(text.split())
# Handle numbers and special characters
text = re.sub(r'\d+', ' NUM ', text)
text = re.sub(r'[^\w\s.,!?-]', ' ', text)
return text.strip()
def extract_features(self, text: str) -> Dict:
"""Extract rich text features using SpaCy."""
# Process text with SpaCy
doc = self.nlp(text)
words = [token.text for token in doc if not token.is_space]
sentences = list(doc.sents)
return {
'length': len(words),
'avg_word_length': np.mean([len(w) for w in words]),
'sentence_count': len(sentences),
'avg_sentence_length': len(words) / len(sentences) if sentences else 0,
'unique_words': len(set(words)),
'density': len(set(words)) / len(words) if words else 0
}
def process_all_articles(self) -> List[Dict]:
"""Process all articles with rich features"""
processed_articles = []
for _, row in tqdm(self.df.iterrows(), desc="Processing articles"):
# Read and process text
text = self.read_article(row['article_id'])
processed_text = self.process_text(text)
# Extract features
features = self.extract_features(processed_text)
# Process labels
labels = self.process_labels(row['subnarratives'])
processed_articles.append({
'id': row['article_id'],
'text': processed_text,
'features': features,
'labels': labels,
'domain': 'UA' if 'UA' in row['article_id'] else 'CC'
})
return processed_articles
def process_labels(self, subnarratives: str) -> List[int]:
"""Convert subnarratives string to label vector"""
label_vector = [0] * len(self.label_encodings)
for subnarr in subnarratives.split(';'):
if subnarr in self.label_encodings:
label_vector[self.label_encodings[subnarr]] = 1
return label_vector
def add_features(self, articles: List[Dict]):
"""Add TF-IDF and additional features"""
# Create TF-IDF features
self.tfidf_vectorizer = TfidfVectorizer(
max_features=5000,
stop_words='english'
)
texts = [article['text'] for article in articles]
tfidf_features = self.tfidf_vectorizer.fit_transform(texts)
# Add to articles
for idx, article in enumerate(articles):
article['tfidf_features'] = tfidf_features[idx]
def create_splits(self, articles: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
"""Create stratified splits"""
# Use domain and label distribution for stratification
stratify_labels = [f"{a['domain']}_{'-'.join(str(l) for l in a['labels'])}"
for a in articles]
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
train_idx, val_idx = next(skf.split(articles, stratify_labels))
return [articles[i] for i in train_idx], [articles[i] for i in val_idx]
def prepare_model_inputs(self, articles: List[Dict]) -> Dict[str, torch.Tensor]:
"""Prepare inputs for the model"""
# Tokenize texts
encodings = self.tokenizer(
[a['text'] for a in articles],
padding=True,
truncation=True,
max_length=512,
return_tensors='pt'
)
# Convert labels to tensor
labels = torch.tensor([a['labels'] for a in articles])
# Convert features to tensor with explicit float32 dtype
features = torch.tensor([[
a['features']['length'],
a['features']['avg_word_length'],
a['features']['sentence_count'],
a['features']['avg_sentence_length'],
a['features']['density']
] for a in articles], dtype=torch.float32) # Specify float32 dtype
return {
'input_ids': encodings['input_ids'],
'attention_mask': encodings['attention_mask'],
'labels': labels,
'features': features
}
def get_label_distribution(self) -> Dict:
"""Calculate the distribution of labels in the dataset"""
if self.df is None:
return {}
label_counts = {}
for subnarrs in self.df['subnarratives'].str.split(';'):
for subnarr in subnarrs:
if subnarr in self.label_encodings:
label_counts[subnarr] = label_counts.get(subnarr, 0) + 1
return label_counts
def get_statistics(self) -> Dict:
"""Get processing statistics"""
return {
'total_articles': len(self.df),
'label_distribution': self.get_label_distribution(),
'vocabulary_size': len(self.tfidf_vectorizer.vocabulary_),
'domain_distribution': self.df['article_id'].apply(
lambda x: 'UA' if 'UA' in x else 'CC'
).value_counts().to_dict()
}
def analyze_features(self, processed_data: Dict) -> Dict:
"""Analyze feature statistics from processed data"""
train_features = processed_data['train']['features']
feature_names = ['length', 'avg_word_length', 'sentence_count',
'avg_sentence_length', 'density']
feature_stats = {}
for i, name in enumerate(feature_names):
values = train_features[:, i]
feature_stats[name] = {
'mean': float(values.mean()),
'std': float(values.std()),
'min': float(values.min()),
'max': float(values.max())
}
return feature_stats
# Usage example
if __name__ == "__main__":
processor = AdvancedNarrativeProcessor(
annotations_file="../../data/subtask-2-annotations.txt",
raw_dir="../../data/raw"
)
processed_data = processor.load_and_process_data()
# Print statistics
stats = processed_data['stats']
print("\n=== Processing Statistics ===")
print(f"Total Articles: {stats['total_articles']}")
print(f"Vocabulary Size: {stats['vocabulary_size']}")
print("\nDomain Distribution:")
for domain, count in stats['domain_distribution'].items():
print(f"{domain}: {count} articles")
# Print feature analysis
feature_stats = processor.analyze_features(processed_data)
print("\n=== Feature Statistics ===")
for name, stats in feature_stats.items():
print(f"{name}:")
print(f" Mean: {stats['mean']:.2f}")
print(f" Std: {stats['std']:.2f}")
print(f" Range: [{stats['min']:.2f}, {stats['max']:.2f}]") |