File size: 10,645 Bytes
fb2cd67
 
 
 
 
6b418f0
fb2cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b418f0
 
 
fb2cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b418f0
 
 
 
 
fb2cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple
import re
import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import StratifiedKFold
import torch
from transformers import AutoTokenizer
import logging
from tqdm import tqdm

class AdvancedNarrativeProcessor:
    def __init__(self, annotations_file: str, raw_dir: str, model_name: str = "microsoft/deberta-v3-large"):
        self.setup_logging()
        self.logger = logging.getLogger(__name__)
        
        self.annotations_file = Path(annotations_file)
        self.raw_dir = Path(raw_dir)
        self.model_name = model_name
        
        # Initialize tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        
        # Initialize SpaCy
        self.nlp = spacy.load("en_core_web_sm")  # Download it with `python -m spacy download en_core_web_sm`
        self.stopwords = spacy.lang.en.stop_words.STOP_WORDS
        
        # Initialize state
        self.df = None
        self.processed_data = None
        self.label_encodings = None
        self.tfidf_vectorizer = None
        
    def setup_logging(self):
        """Set up logging configuration"""
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )

    def load_and_process_data(self) -> Dict:
        """Main processing pipeline"""
        self.logger.info("Starting data processing pipeline...")
        
        # 1. Load Raw Data
        self.load_data()
        
        # 2. Process Text and Labels
        processed_articles = self.process_all_articles()
        
        # 3. Engineer Features
        self.add_features(processed_articles)
        
        # 4. Create Data Splits
        train_data, val_data = self.create_splits(processed_articles)
        
        # 5. Prepare Model Inputs
        train_inputs = self.prepare_model_inputs(train_data)
        val_inputs = self.prepare_model_inputs(val_data)
        
        self.logger.info("Data processing complete!")
        
        return {
            'train': train_inputs,
            'val': val_inputs,
            'label_encodings': self.label_encodings,
            'stats': self.get_statistics()
        }

    def load_data(self):
        """Load and prepare the annotation data"""
        self.logger.info(f"Loading annotations from {self.annotations_file}")
        
        # Load annotations file
        self.df = pd.read_csv(
            self.annotations_file,
            sep='\t',
            names=['article_id', 'narratives', 'subnarratives']
        )
        
        # Create label encodings
        all_subnarratives = set()
        for subnarrs in self.df['subnarratives'].str.split(';'):
            all_subnarratives.update(subnarrs)
        
        self.label_encodings = {
            label: idx for idx, label in enumerate(sorted(all_subnarratives))
        }
        
        self.logger.info(f"Loaded {len(self.df)} articles with {len(self.label_encodings)} unique labels")

    def read_article(self, article_id: str) -> str:
        """Read article content from file"""
        try:
            with open(self.raw_dir / article_id, 'r', encoding='utf-8') as f:
                return f.read()
        except Exception as e:
            self.logger.error(f"Error reading article {article_id}: {e}")
            return ""

    def process_text(self, text: str) -> str:
        """Enhanced text processing"""
        # Remove URLs and emails
        text = re.sub(r'http\S+|www\S+|\S+@\S+', '', text)
        
        # Normalize whitespace
        text = ' '.join(text.split())
        
        # Handle numbers and special characters
        text = re.sub(r'\d+', ' NUM ', text)
        text = re.sub(r'[^\w\s.,!?-]', ' ', text)
        
        return text.strip()

    def extract_features(self, text: str) -> Dict:
        """Extract rich text features using SpaCy."""
        # Process text with SpaCy
        doc = self.nlp(text)
        words = [token.text for token in doc if not token.is_space]
        sentences = list(doc.sents)
        
        return {
            'length': len(words),
            'avg_word_length': np.mean([len(w) for w in words]),
            'sentence_count': len(sentences),
            'avg_sentence_length': len(words) / len(sentences) if sentences else 0,
            'unique_words': len(set(words)),
            'density': len(set(words)) / len(words) if words else 0
        }

    def process_all_articles(self) -> List[Dict]:
        """Process all articles with rich features"""
        processed_articles = []
        
        for _, row in tqdm(self.df.iterrows(), desc="Processing articles"):
            # Read and process text
            text = self.read_article(row['article_id'])
            processed_text = self.process_text(text)
            
            # Extract features
            features = self.extract_features(processed_text)
            
            # Process labels
            labels = self.process_labels(row['subnarratives'])
            
            processed_articles.append({
                'id': row['article_id'],
                'text': processed_text,
                'features': features,
                'labels': labels,
                'domain': 'UA' if 'UA' in row['article_id'] else 'CC'
            })
            
        return processed_articles

    def process_labels(self, subnarratives: str) -> List[int]:
        """Convert subnarratives string to label vector"""
        label_vector = [0] * len(self.label_encodings)
        for subnarr in subnarratives.split(';'):
            if subnarr in self.label_encodings:
                label_vector[self.label_encodings[subnarr]] = 1
        return label_vector

    def add_features(self, articles: List[Dict]):
        """Add TF-IDF and additional features"""
        # Create TF-IDF features
        self.tfidf_vectorizer = TfidfVectorizer(
            max_features=5000,
            stop_words='english'
        )
        
        texts = [article['text'] for article in articles]
        tfidf_features = self.tfidf_vectorizer.fit_transform(texts)
        
        # Add to articles
        for idx, article in enumerate(articles):
            article['tfidf_features'] = tfidf_features[idx]

    def create_splits(self, articles: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
        """Create stratified splits"""
        # Use domain and label distribution for stratification
        stratify_labels = [f"{a['domain']}_{'-'.join(str(l) for l in a['labels'])}" 
                          for a in articles]
        
        skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
        train_idx, val_idx = next(skf.split(articles, stratify_labels))
        
        return [articles[i] for i in train_idx], [articles[i] for i in val_idx]

    def prepare_model_inputs(self, articles: List[Dict]) -> Dict[str, torch.Tensor]:
        """Prepare inputs for the model"""
        # Tokenize texts
        encodings = self.tokenizer(
            [a['text'] for a in articles],
            padding=True,
            truncation=True,
            max_length=512,
            return_tensors='pt'
        )
        
        # Convert labels to tensor
        labels = torch.tensor([a['labels'] for a in articles])
        
        # Convert features to tensor with explicit float32 dtype
        features = torch.tensor([[
            a['features']['length'],
            a['features']['avg_word_length'],
            a['features']['sentence_count'],
            a['features']['avg_sentence_length'],
            a['features']['density']
        ] for a in articles], dtype=torch.float32)  # Specify float32 dtype
        
        return {
            'input_ids': encodings['input_ids'],
            'attention_mask': encodings['attention_mask'],
            'labels': labels,
            'features': features
        }

    def get_label_distribution(self) -> Dict:
        """Calculate the distribution of labels in the dataset"""
        if self.df is None:
            return {}
        
        label_counts = {}
        for subnarrs in self.df['subnarratives'].str.split(';'):
            for subnarr in subnarrs:
                if subnarr in self.label_encodings:
                    label_counts[subnarr] = label_counts.get(subnarr, 0) + 1
        
        return label_counts

    def get_statistics(self) -> Dict:
        """Get processing statistics"""
        return {
            'total_articles': len(self.df),
            'label_distribution': self.get_label_distribution(),
            'vocabulary_size': len(self.tfidf_vectorizer.vocabulary_),
            'domain_distribution': self.df['article_id'].apply(
                lambda x: 'UA' if 'UA' in x else 'CC'
            ).value_counts().to_dict()
        }

    def analyze_features(self, processed_data: Dict) -> Dict:
        """Analyze feature statistics from processed data"""
        train_features = processed_data['train']['features']
        feature_names = ['length', 'avg_word_length', 'sentence_count', 
                        'avg_sentence_length', 'density']
        
        feature_stats = {}
        for i, name in enumerate(feature_names):
            values = train_features[:, i]
            feature_stats[name] = {
                'mean': float(values.mean()),
                'std': float(values.std()),
                'min': float(values.min()),
                'max': float(values.max())
            }
        
        return feature_stats

# Usage example
if __name__ == "__main__":
    processor = AdvancedNarrativeProcessor(
        annotations_file="../../data/subtask-2-annotations.txt",
        raw_dir="../../data/raw"
    )
    
    processed_data = processor.load_and_process_data()
    
    # Print statistics
    stats = processed_data['stats']
    print("\n=== Processing Statistics ===")
    print(f"Total Articles: {stats['total_articles']}")
    print(f"Vocabulary Size: {stats['vocabulary_size']}")
    print("\nDomain Distribution:")
    for domain, count in stats['domain_distribution'].items():
        print(f"{domain}: {count} articles")
    
    # Print feature analysis
    feature_stats = processor.analyze_features(processed_data)
    print("\n=== Feature Statistics ===")
    for name, stats in feature_stats.items():
        print(f"{name}:")
        print(f"  Mean: {stats['mean']:.2f}")
        print(f"  Std: {stats['std']:.2f}")
        print(f"  Range: [{stats['min']:.2f}, {stats['max']:.2f}]")