Spaces:
Runtime error
Runtime error
File size: 6,074 Bytes
fb2cd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import torch
import torch.nn as nn
from transformers import AutoModel, AutoConfig
from typing import Dict, Optional
import logging
from torch.utils.data import Dataset, DataLoader
# NarrativeClassifier Model Definition
class NarrativeClassifier(nn.Module):
"""
Production-ready model for narrative classification combining transformer with additional features.
"""
def __init__(
self,
model_name: str = "microsoft/deberta-v3-large",
num_labels: int = 84,
dropout: float = 0.1,
freeze_encoder: bool = False,
device: Optional[str] = None
):
super().__init__()
self.logger = logging.getLogger(__name__)
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.logger.info(f"Using device: {self.device}")
self.config = AutoConfig.from_pretrained(model_name)
try:
self.transformer = AutoModel.from_pretrained(model_name, config=self.config)
except Exception as e:
self.logger.error(f"Error loading transformer model: {str(e)}")
raise
if freeze_encoder:
self.logger.info("Freezing transformer encoder")
for param in self.transformer.parameters():
param.requires_grad = False
self.transformer_dim = self.transformer.config.hidden_size
self.num_features = 5 # Additional numerical features
self.feature_processor = nn.Sequential(
nn.Linear(self.num_features, 64),
nn.LayerNorm(64),
nn.ReLU(),
nn.Dropout(dropout)
)
self.pre_classifier = nn.Sequential(
nn.Linear(self.transformer_dim + 64, 512),
nn.LayerNorm(512),
nn.ReLU(),
nn.Dropout(dropout)
)
self.classifier = nn.Linear(512, num_labels)
self._init_weights()
self.to(self.device)
def _init_weights(self):
"""Initialize weights for added layers."""
for module in [self.feature_processor, self.pre_classifier, self.classifier]:
for layer in module.modules():
if isinstance(layer, nn.Linear):
torch.nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
torch.nn.init.zeros_(layer.bias)
def forward(self, input_ids, attention_mask, features, return_dict=False):
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
)
sequence_output = transformer_outputs.last_hidden_state[:, 0, :]
processed_features = self.feature_processor(features)
combined = torch.cat([sequence_output, processed_features], dim=1)
intermediate = self.pre_classifier(combined)
logits = self.classifier(intermediate)
if return_dict:
return {
'logits': logits,
'hidden_states': intermediate,
'transformer_output': sequence_output
}
return logits
# Dataset Definition
class NarrativeDataset(Dataset):
def __init__(self, data):
"""
Initialize dataset with data.
Args:
data: List of dictionaries containing input_ids, attention_mask, and features.
"""
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
"""
Return one sample.
"""
sample = self.data[idx]
return {
'input_ids': torch.tensor(sample['input_ids'], dtype=torch.long),
'attention_mask': torch.tensor(sample['attention_mask'], dtype=torch.long),
'features': torch.tensor(sample['features'], dtype=torch.float)
}
def get_num_labels(self):
"""
Return the number of labels (for classification tasks).
"""
return max(item['label'] for item in self.data) + 1
# Main Testing Section
if __name__ == "__main__":
import sys
sys.path.append("../../")
from scripts.data_processing.data_preparation import AdvancedNarrativeProcessor
from scripts.models.dataset import NarrativeDataset
from torch.utils.data import DataLoader
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.info(f"CUDA available: {torch.cuda.is_available()}")
try:
# Load real data
processor = AdvancedNarrativeProcessor(
annotations_file="../../data/subtask-2-annotations.txt",
raw_dir="../../data/raw"
)
processed_data = processor.load_and_process_data()
# Create dataset and dataloader
train_dataset = NarrativeDataset(processed_data['train'])
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
# Initialize model
model = NarrativeClassifier(num_labels=train_dataset.get_num_labels())
logger.info(f"Model initialized on device: {next(model.parameters()).device}")
# Test with real batch
for batch in train_loader:
batch = {k: v.to(model.device) for k, v in batch.items()}
outputs = model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
features=batch['features'],
return_dict=True
)
logger.info("\n=== Model Test Results ===")
logger.info(f"Input shape: {batch['input_ids'].shape}")
logger.info(f"Output logits shape: {outputs['logits'].shape}")
logger.info(f"Hidden states shape: {outputs['hidden_states'].shape}")
logger.info("Forward pass successful!")
break # Test only one batch
except Exception as e:
logger.error(f"Error during model test: {str(e)}")
raise
|