File size: 6,074 Bytes
fb2cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
from transformers import AutoModel, AutoConfig
from typing import Dict, Optional
import logging
from torch.utils.data import Dataset, DataLoader

# NarrativeClassifier Model Definition
class NarrativeClassifier(nn.Module):
    """
    Production-ready model for narrative classification combining transformer with additional features.
    """
    def __init__(
        self,
        model_name: str = "microsoft/deberta-v3-large",
        num_labels: int = 84,
        dropout: float = 0.1,
        freeze_encoder: bool = False,
        device: Optional[str] = None
    ):
        super().__init__()
        self.logger = logging.getLogger(__name__)
        self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
        self.logger.info(f"Using device: {self.device}")
        
        self.config = AutoConfig.from_pretrained(model_name)
        try:
            self.transformer = AutoModel.from_pretrained(model_name, config=self.config)
        except Exception as e:
            self.logger.error(f"Error loading transformer model: {str(e)}")
            raise
        
        if freeze_encoder:
            self.logger.info("Freezing transformer encoder")
            for param in self.transformer.parameters():
                param.requires_grad = False

        self.transformer_dim = self.transformer.config.hidden_size
        self.num_features = 5  # Additional numerical features

        self.feature_processor = nn.Sequential(
            nn.Linear(self.num_features, 64),
            nn.LayerNorm(64),
            nn.ReLU(),
            nn.Dropout(dropout)
        )
        
        self.pre_classifier = nn.Sequential(
            nn.Linear(self.transformer_dim + 64, 512),
            nn.LayerNorm(512),
            nn.ReLU(),
            nn.Dropout(dropout)
        )
        
        self.classifier = nn.Linear(512, num_labels)
        self._init_weights()
        self.to(self.device)
        
    def _init_weights(self):
        """Initialize weights for added layers."""
        for module in [self.feature_processor, self.pre_classifier, self.classifier]:
            for layer in module.modules():
                if isinstance(layer, nn.Linear):
                    torch.nn.init.xavier_uniform_(layer.weight)
                    if layer.bias is not None:
                        torch.nn.init.zeros_(layer.bias)

    def forward(self, input_ids, attention_mask, features, return_dict=False):
        transformer_outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        sequence_output = transformer_outputs.last_hidden_state[:, 0, :]
        processed_features = self.feature_processor(features)
        combined = torch.cat([sequence_output, processed_features], dim=1)
        intermediate = self.pre_classifier(combined)
        logits = self.classifier(intermediate)
        
        if return_dict:
            return {
                'logits': logits,
                'hidden_states': intermediate,
                'transformer_output': sequence_output
            }
        
        return logits


# Dataset Definition
class NarrativeDataset(Dataset):
    def __init__(self, data):
        """
        Initialize dataset with data.
        Args:
            data: List of dictionaries containing input_ids, attention_mask, and features.
        """
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        """
        Return one sample.
        """
        sample = self.data[idx]
        return {
            'input_ids': torch.tensor(sample['input_ids'], dtype=torch.long),
            'attention_mask': torch.tensor(sample['attention_mask'], dtype=torch.long),
            'features': torch.tensor(sample['features'], dtype=torch.float)
        }

    def get_num_labels(self):
        """
        Return the number of labels (for classification tasks).
        """
        return max(item['label'] for item in self.data) + 1




# Main Testing Section
if __name__ == "__main__":
    import sys
    sys.path.append("../../")
    from scripts.data_processing.data_preparation import AdvancedNarrativeProcessor
    from scripts.models.dataset import NarrativeDataset
    from torch.utils.data import DataLoader
    # Set up logging
    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)
    
    logger.info(f"CUDA available: {torch.cuda.is_available()}")
    
    try:
        # Load real data
        processor = AdvancedNarrativeProcessor(
            annotations_file="../../data/subtask-2-annotations.txt",
            raw_dir="../../data/raw"
        )
        processed_data = processor.load_and_process_data()
        
        # Create dataset and dataloader
        train_dataset = NarrativeDataset(processed_data['train'])
        train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
        
        # Initialize model
        model = NarrativeClassifier(num_labels=train_dataset.get_num_labels())
        logger.info(f"Model initialized on device: {next(model.parameters()).device}")
        
        # Test with real batch
        for batch in train_loader:
            batch = {k: v.to(model.device) for k, v in batch.items()}
            outputs = model(
                input_ids=batch['input_ids'],
                attention_mask=batch['attention_mask'],
                features=batch['features'],
                return_dict=True
            )
            
            logger.info("\n=== Model Test Results ===")
            logger.info(f"Input shape: {batch['input_ids'].shape}")
            logger.info(f"Output logits shape: {outputs['logits'].shape}")
            logger.info(f"Hidden states shape: {outputs['hidden_states'].shape}")
            logger.info("Forward pass successful!")
            break  # Test only one batch
            
    except Exception as e:
        logger.error(f"Error during model test: {str(e)}")
        raise