File size: 8,746 Bytes
fb2cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from torch.utils.data import DataLoader
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import logging
from pathlib import Path
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score
import json
from datetime import datetime


class NarrativeTrainer:
    """
    Comprehensive trainer for narrative classification with GPU support.
    """
    def __init__(
        self,
        model,
        train_dataset,
        val_dataset,
        config,
    ):
        self.setup_logging()
        self.logger = logging.getLogger(__name__)
        
        # Set device
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.logger.info(f"Using device: {self.device}")
        
        # Initialize model and components
        self.model = model.to(self.device)
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.config = config
        
        self.current_epoch = 0
        self.global_step = 0
        self.best_val_f1 = 0.0
        
        self.setup_training()
        
        self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        self.output_dir = Path(config.output_dir) / self.timestamp
        self.output_dir.mkdir(parents=True, exist_ok=True)
        
        self.save_config()
        self.history = {
            'train_loss': [],
            'val_loss': [],
            'val_f1': [],
            'val_precision': [],
            'val_recall': []
        }
    
    def setup_logging(self):
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )
    
    def setup_training(self):
        """Initialize dataloaders, optimizer, and scheduler."""
        self.train_loader = DataLoader(
            self.train_dataset,
            batch_size=self.config.batch_size,
            shuffle=True,
            num_workers=4
        )
        
        self.val_loader = DataLoader(
            self.val_dataset,
            batch_size=self.config.batch_size,
            num_workers=4
        )
        
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=self.config.learning_rate,
            weight_decay=self.config.weight_decay
        )
        
        num_training_steps = len(self.train_loader) * self.config.num_epochs
        num_warmup_steps = int(num_training_steps * self.config.warmup_ratio)
        
        self.scheduler = get_linear_schedule_with_warmup(
            self.optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps
        )
        
        self.criterion = torch.nn.BCEWithLogitsLoss()
    
    def save_config(self):
        """Save training configuration."""
        config_dict = {k: str(v) for k, v in vars(self.config).items()}
        config_path = self.output_dir / 'config.json'
        with open(config_path, 'w') as f:
            json.dump(config_dict, f, indent=4)
    
    def train_epoch(self):
        """Train model for one epoch."""
        self.model.train()
        total_loss = 0
        pbar = tqdm(self.train_loader, desc=f'Epoch {self.current_epoch + 1}/{self.config.num_epochs}')
        
        for batch in pbar:
            batch = {k: v.to(self.device) for k, v in batch.items()}
            
            self.optimizer.zero_grad()
            outputs = self.model(
                input_ids=batch['input_ids'],
                attention_mask=batch['attention_mask'],
                features=batch['features']
            )
            
            loss = self.criterion(outputs, batch['labels'])
            loss.backward()
            
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)
            self.optimizer.step()
            self.scheduler.step()
            
            total_loss += loss.item()
            pbar.set_postfix({'loss': total_loss / (pbar.n + 1)})
            self.global_step += 1
            
            if self.global_step % self.config.eval_steps == 0:
                self.evaluate()
        
        return total_loss / len(self.train_loader)
    
    @torch.no_grad()
    def evaluate(self):
        """Evaluate model performance."""
        self.model.eval()
        total_loss = 0
        all_preds, all_labels = [], []
        
        for batch in tqdm(self.val_loader, desc="Evaluating"):
            batch = {k: v.to(self.device) for k, v in batch.items()}
            outputs = self.model(
                input_ids=batch['input_ids'],
                attention_mask=batch['attention_mask'],
                features=batch['features']
            )
            
            loss = self.criterion(outputs, batch['labels'])
            total_loss += loss.item()
            
            preds = torch.sigmoid(outputs) > 0.5
            all_preds.append(preds.cpu().numpy())
            all_labels.append(batch['labels'].cpu().numpy())
        
        all_preds = np.concatenate(all_preds, axis=0)
        all_labels = np.concatenate(all_labels, axis=0)
        
        metrics = {
            'loss': total_loss / len(self.val_loader),
            'f1': f1_score(all_labels, all_preds, average='micro'),
            'precision': precision_score(all_labels, all_preds, average='micro'),
            'recall': recall_score(all_labels, all_preds, average='micro')
        }
        
        self.logger.info(f"Step {self.global_step} - Validation metrics: {metrics}")
        
        if metrics['f1'] > self.best_val_f1:
            self.best_val_f1 = metrics['f1']
            self.save_model('best_model.pt', metrics)
        
        return metrics
    
    def save_model(self, filename: str, metrics: dict = None):
        save_path = self.output_dir / filename
        torch.save({
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'scheduler_state_dict': self.scheduler.state_dict(),
            'epoch': self.current_epoch,
            'global_step': self.global_step,
            'best_val_f1': self.best_val_f1,
            'metrics': metrics
        }, save_path)
        self.logger.info(f"Model saved to {save_path}")
    
    def train(self):
        """Run training for all epochs."""
        self.logger.info("Starting training...")
        for epoch in range(self.config.num_epochs):
            self.current_epoch = epoch
            train_loss = self.train_epoch()
            self.history['train_loss'].append(train_loss)
            
            val_metrics = self.evaluate()
            self.history['val_loss'].append(val_metrics['loss'])
            self.history['val_f1'].append(val_metrics['f1'])
            self.history['val_precision'].append(val_metrics['precision'])
            self.history['val_recall'].append(val_metrics['recall'])
            
            self.save_model(f'checkpoint_epoch_{epoch+1}.pt', val_metrics)
            history_path = self.output_dir / 'history.json'
            with open(history_path, 'w') as f:
                json.dump(self.history, f, indent=4)
        
        self.logger.info("Training completed!")
        return self.history


if __name__ == "__main__":
    import sys
    sys.path.append("../../")
    from scripts.models.model import NarrativeClassifier
    from scripts.models.dataset import NarrativeDataset
    from scripts.config.config import TrainingConfig
    from scripts.data_processing.data_preparation import AdvancedNarrativeProcessor
    
    # Initialize training configuration
    config = TrainingConfig(
        output_dir=Path("./output"),
        num_epochs=5,
        batch_size=32,
        learning_rate=5e-5,
        weight_decay=0.01,
        warmup_ratio=0.1,
        max_grad_norm=1.0,
        eval_steps=100
    )
    
    # Load and process data
    processor = AdvancedNarrativeProcessor(
        annotations_file="../../data/subtask-2-annotations.txt",
        raw_dir="../../data/raw"
    )
    processed_data = processor.load_and_process_data()
    
    # Create datasets
    train_dataset = NarrativeDataset(processed_data['train'])
    val_dataset = NarrativeDataset(processed_data['val'])
    
    # Initialize model
    model = NarrativeClassifier(num_labels=train_dataset.get_num_labels())
    
    # Initialize trainer
    trainer = NarrativeTrainer(
        model=model,
        train_dataset=train_dataset,
        val_dataset=val_dataset,
        config=config
    )
    
    # Start full training
    print("\n=== Starting Training ===")
    trainer.train()
    print("\nTraining completed successfully!")