Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the tokenizer and model
|
6 |
+
model_name = "roberta-large" # Replace with your trained model if uploaded
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define the prediction function
|
11 |
+
def classify_text(text):
|
12 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
13 |
+
outputs = model(**inputs)
|
14 |
+
probabilities = torch.softmax(outputs.logits, dim=-1).tolist()[0]
|
15 |
+
labels = ["Speculating War Outcomes", "Discrediting Ukraine", "Praise of Russia"] # Replace with your actual labels
|
16 |
+
predictions = {label: prob for label, prob in zip(labels, probabilities)}
|
17 |
+
return predictions
|
18 |
+
|
19 |
+
# Create the Gradio interface
|
20 |
+
demo = gr.Interface(
|
21 |
+
fn=classify_text,
|
22 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter text to classify..."),
|
23 |
+
outputs=gr.Label(num_top_classes=3),
|
24 |
+
title="Narrative Classification",
|
25 |
+
description="Classify text into predefined narrative categories."
|
26 |
+
)
|
27 |
+
|
28 |
+
# Launch the app
|
29 |
+
demo.launch()
|