eerrffuunn commited on
Commit
cceb6b0
·
verified ·
1 Parent(s): 5f1960a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load the tokenizer and model
6
+ model_name = "roberta-large" # Replace with your trained model if uploaded
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Define the prediction function
11
+ def classify_text(text):
12
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
13
+ outputs = model(**inputs)
14
+ probabilities = torch.softmax(outputs.logits, dim=-1).tolist()[0]
15
+ labels = ["Speculating War Outcomes", "Discrediting Ukraine", "Praise of Russia"] # Replace with your actual labels
16
+ predictions = {label: prob for label, prob in zip(labels, probabilities)}
17
+ return predictions
18
+
19
+ # Create the Gradio interface
20
+ demo = gr.Interface(
21
+ fn=classify_text,
22
+ inputs=gr.Textbox(lines=3, placeholder="Enter text to classify..."),
23
+ outputs=gr.Label(num_top_classes=3),
24
+ title="Narrative Classification",
25
+ description="Classify text into predefined narrative categories."
26
+ )
27
+
28
+ # Launch the app
29
+ demo.launch()