eeshawn11 commited on
Commit
a36ea09
·
1 Parent(s): 691c828

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -19
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from ultralyticsplus import YOLO
3
  from ultralytics.yolo.utils.plotting import Annotator
4
 
5
  def yolov8_inference(
@@ -24,23 +24,23 @@ def yolov8_inference(
24
  model.iou = iou_threshold
25
  # results = model.predict(image, return_outputs=True)
26
  results = model.predict(image)
27
- object_prediction_list = []
28
- annotator = Annotator(image)
29
- for _, image_results in enumerate(results):
30
- if len(image_results)!=0:
31
- image_predictions_in_xyxy_format = image_results['det']
32
- for pred in image_predictions_in_xyxy_format:
33
- x1, y1, x2, y2 = (
34
- int(pred[0]),
35
- int(pred[1]),
36
- int(pred[2]),
37
- int(pred[3]),
38
- )
39
- bbox = [x1, y1, x2, y2]
40
- score = pred[4]
41
- category_name = model.model.names[int(pred[5])]
42
- category_id = pred[5]
43
- annotator.box_label(bbox, f"{category_name} {score}")
44
  # object_prediction = ObjectPrediction(
45
  # bbox=bbox,
46
  # category_id=int(category_id),
@@ -53,7 +53,9 @@ def yolov8_inference(
53
  # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
54
 
55
  # return output_image['image']
56
- return annotator.result()
 
 
57
 
58
 
59
  inputs = [
 
1
  import gradio as gr
2
+ from ultralyticsplus import YOLO, render_result
3
  from ultralytics.yolo.utils.plotting import Annotator
4
 
5
  def yolov8_inference(
 
24
  model.iou = iou_threshold
25
  # results = model.predict(image, return_outputs=True)
26
  results = model.predict(image)
27
+ # object_prediction_list = []
28
+ # annotator = Annotator(image)
29
+ # for _, image_results in enumerate(results):
30
+ # if len(image_results)!=0:
31
+ # image_predictions_in_xyxy_format = image_results['det']
32
+ # for pred in image_predictions_in_xyxy_format:
33
+ # x1, y1, x2, y2 = (
34
+ # int(pred[0]),
35
+ # int(pred[1]),
36
+ # int(pred[2]),
37
+ # int(pred[3]),
38
+ # )
39
+ # bbox = [x1, y1, x2, y2]
40
+ # score = pred[4]
41
+ # category_name = model.model.names[int(pred[5])]
42
+ # category_id = pred[5]
43
+ # annotator.box_label(bbox, f"{category_name} {score}")
44
  # object_prediction = ObjectPrediction(
45
  # bbox=bbox,
46
  # category_id=int(category_id),
 
53
  # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
54
 
55
  # return output_image['image']
56
+ # return annotator.result()
57
+ render = render_result(model=model, image=image, result=results[0])
58
+ return render
59
 
60
 
61
  inputs = [