Spaces:
Runtime error
Runtime error
eeshawn
commited on
Commit
·
da44c62
1
Parent(s):
f111195
update model path
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from ultralyticsplus import YOLO
|
|
|
3 |
|
4 |
def yolov8_inference(
|
5 |
-
image: gr.
|
6 |
model_path = "eeshawn11/naruto_hand_seal_detection",
|
7 |
-
conf_threshold: gr.
|
8 |
-
iou_threshold: gr.
|
9 |
):
|
10 |
"""
|
11 |
YOLOv8 inference function
|
@@ -17,11 +18,13 @@ def yolov8_inference(
|
|
17 |
Returns:
|
18 |
Rendered image
|
19 |
"""
|
20 |
-
model = YOLO(model_path)
|
|
|
21 |
model.conf = conf_threshold
|
22 |
model.iou = iou_threshold
|
23 |
results = model.predict(image, return_outputs=True)
|
24 |
object_prediction_list = []
|
|
|
25 |
for _, image_results in enumerate(results):
|
26 |
if len(image_results)!=0:
|
27 |
image_predictions_in_xyxy_format = image_results['det']
|
@@ -36,27 +39,30 @@ def yolov8_inference(
|
|
36 |
score = pred[4]
|
37 |
category_name = model.model.names[int(pred[5])]
|
38 |
category_id = pred[5]
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
image = read_image(image)
|
48 |
-
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
49 |
-
|
|
|
|
|
50 |
|
51 |
|
52 |
inputs = [
|
53 |
# gr.inputs.Image(type="filepath", label="Input Image"),
|
54 |
gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
|
55 |
-
gr.
|
56 |
-
gr.
|
57 |
]
|
58 |
|
59 |
-
outputs = gr.
|
60 |
title = "Naruto Hand Seal Detection with YOLOv8"
|
61 |
|
62 |
myapp = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
from ultralyticsplus import YOLO
|
3 |
+
from ultralytics.yolo.utils.plotting import Annotator
|
4 |
|
5 |
def yolov8_inference(
|
6 |
+
image: gr.Image = None,
|
7 |
model_path = "eeshawn11/naruto_hand_seal_detection",
|
8 |
+
conf_threshold: gr.Slider = 0.50,
|
9 |
+
iou_threshold: gr.Slider = 0.45,
|
10 |
):
|
11 |
"""
|
12 |
YOLOv8 inference function
|
|
|
18 |
Returns:
|
19 |
Rendered image
|
20 |
"""
|
21 |
+
# model = YOLO(model_path)
|
22 |
+
model = YOLO("ultralyticsplus/yolov8s")
|
23 |
model.conf = conf_threshold
|
24 |
model.iou = iou_threshold
|
25 |
results = model.predict(image, return_outputs=True)
|
26 |
object_prediction_list = []
|
27 |
+
annotator = Annotator(image)
|
28 |
for _, image_results in enumerate(results):
|
29 |
if len(image_results)!=0:
|
30 |
image_predictions_in_xyxy_format = image_results['det']
|
|
|
39 |
score = pred[4]
|
40 |
category_name = model.model.names[int(pred[5])]
|
41 |
category_id = pred[5]
|
42 |
+
annotator.box_label(bbox, f"{category_name} {score}")
|
43 |
+
# object_prediction = ObjectPrediction(
|
44 |
+
# bbox=bbox,
|
45 |
+
# category_id=int(category_id),
|
46 |
+
# score=score,
|
47 |
+
# category_name=category_name,
|
48 |
+
# )
|
49 |
+
# object_prediction_list.append(object_prediction)
|
50 |
|
51 |
+
# image = read_image(image)
|
52 |
+
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
53 |
+
|
54 |
+
# return output_image['image']
|
55 |
+
return annotator.result()
|
56 |
|
57 |
|
58 |
inputs = [
|
59 |
# gr.inputs.Image(type="filepath", label="Input Image"),
|
60 |
gr.Image(source="upload", type="pil", label="Image Upload", interactive=True),
|
61 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
|
62 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
63 |
]
|
64 |
|
65 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
66 |
title = "Naruto Hand Seal Detection with YOLOv8"
|
67 |
|
68 |
myapp = gr.Interface(
|