import gradio as gr from ultralyticsplus import YOLO from ultralytics.yolo.utils.plotting import Annotator def yolov8_inference( image: gr.Image = None, model_path = "eeshawn11/naruto_hand_seal_detection", conf_threshold: gr.Slider = 0.50, iou_threshold: gr.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ # model = YOLO(model_path) model = YOLO("ultralyticsplus/yolov8s") model.conf = conf_threshold model.iou = iou_threshold results = model.predict(image, return_outputs=True) object_prediction_list = [] annotator = Annotator(image) for _, image_results in enumerate(results): if len(image_results)!=0: image_predictions_in_xyxy_format = image_results['det'] for pred in image_predictions_in_xyxy_format: x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] annotator.box_label(bbox, f"{category_name} {score}") # object_prediction = ObjectPrediction( # bbox=bbox, # category_id=int(category_id), # score=score, # category_name=category_name, # ) # object_prediction_list.append(object_prediction) # image = read_image(image) # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) # return output_image['image'] return annotator.result() inputs = [ # gr.inputs.Image(type="filepath", label="Input Image"), gr.Image(source="upload", type="pil", label="Image Upload", interactive=True), gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "Naruto Hand Seal Detection with YOLOv8" myapp = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, ) myapp.queue() myapp.launch()