efecelik's picture
Create app.py
6af6114 verified
raw
history blame
726 Bytes
import streamlit as st
from transformers import pipeline
# Title and description
st.title("Sentiment Analysis")
st.write("This application performs text classification using a pre-trained Hugging Face model.")
# Define the model and pipeline
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
classifier = pipeline("sentiment-analysis", model=model_name)
# Get user input
user_input = st.text_area("Enter text:", placeholder="Type your text here...")
# Analyze and display results
if st.button("Analyze"):
if user_input.strip():
result = classifier(user_input)
st.write(f"**Result:** {result[0]['label']} ({result[0]['score']:.2f})")
else:
st.warning("Please enter some text.")