import streamlit as st from transformers import pipeline # Title and description st.title("Sentiment Analysis") st.write("This application performs text classification using a pre-trained Hugging Face model.") # Define the model and pipeline model_name = "distilbert-base-uncased-finetuned-sst-2-english" classifier = pipeline("sentiment-analysis", model=model_name) # Get user input user_input = st.text_area("Enter text:", placeholder="Type your text here...") # Analyze and display results if st.button("Analyze"): if user_input.strip(): result = classifier(user_input) st.write(f"**Result:** {result[0]['label']} ({result[0]['score']:.2f})") else: st.warning("Please enter some text.")