efeperro's picture
Create app.py
a14156a verified
raw
history blame
2.2 kB
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from transformers import T5Tokenizer, ViTFeatureExtractor
# Model loading and setting up the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load("model_vit_ai.pt", map_location=device)
model.to(device)
# Tokenizer and Feature Extractor
tokenizer = T5Tokenizer.from_pretrained('t5-base')
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
# Define the image preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
])
def preprocess_image(image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
image = transform(image)
return image.unsqueeze(0)
def generate_caption(image):
model.eval()
with torch.no_grad():
image_tensor = preprocess_image(image).to(device)
decoder_input_ids = torch.full((1, 1), model.decoder_start_token_id, dtype=torch.long, device=device)
for _ in range(50):
outputs = model(images=image_tensor, decoder_ids=decoder_input_ids)
next_token_logits = outputs.logits[:, -1, :]
next_token_id = next_token_logits.argmax(1, keepdim=True)
decoder_input_ids = torch.cat([decoder_input_ids, next_token_id], dim=-1)
if torch.eq(next_token_id, tokenizer.eos_token_id).all():
break
caption = tokenizer.decode(decoder_input_ids.squeeze(0), skip_special_tokens=True)
return caption
sample_images = [
"sample_image1.jpg",
"sample_image2.jpg",
"sample_image3.jpg"
]
# Define Gradio interface
interface = gr.Interface(
fn=generate_caption,
inputs=gr.inputs.Image(source="upload", tool='editor', type="numpy", label="Upload an image or take a photo"),
outputs='text',
examples=sample_images,
title="Image Captioning Model",
description="Upload an image, select a sample image, or use your webcam to take a photo and generate a caption."
)
# Run the interface
interface.launch(debug=True)