import gradio as gr import cv2 import numpy as np import face_recognition import os from datetime import datetime def greet(video): path = "ImagesAttendance" images = [] classNames = [] myList = os.listdir(path) print(myList) for cl in myList curImg = cv2.imread(f'{path}/{cl}') images.append(curImg) classNames.append(os.path.splitext(cl)[0]) print(classNames) def findEncoding(images): encodeList = [] for img in images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) encode = face_recognition.face_encodings(img)[0] encodeList.append(encode) return encodeList def markAttendance(name): with open('Attendance.csv','r+') as f: myDataList = f.readlines() nameList = [] for line in myDataList: entry = line.split(',') nameList.append(entry[0]) if name not in nameList: now = datetime.now() dtString = now.strftime('%H:%M:%S') f.writelinbes(f'\n{name},{dtString}') encodeListKnown = findEncodings(images) print('Encoding Complete') cap = cv2.VideoCapture(video) while True: succes, img = cap.read() imgS = cv2.resize(img,(0,0),None,0.25,0.25) imgS = cv2.cvtColor(imgs, cv2.COLOR_BGR2GRAY) facesCurFrame = face:recognition.face_locations(imgS) encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) for encodeFace_faceLoc in zip(encodesCurFrame, facesCurFrame): matches = face_recognition.compare_faces(encodeListKnown,encodeFace) faceDis = face_recognition.face_distance(encodeListKnown,encodeFace) matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = classNames[matchIndex].upper() y1,x2,y2,x1 = faceLoc y1,x2,y2,x1 = y1*4,x2*4,y2*4,x1*4 cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2) cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILED) cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2) markAttendance(name) cv2.imshow('Webcam',img) cv2.waitKey(1) return gray iface = gr.Interface( fn=greet, inputs=gr.Video(source = "webcam", format = "mp4", streaming = "True"), outputs="image" ) iface.launch()