Spaces:
Runtime error
Runtime error
File size: 5,458 Bytes
d8e79ee 0fe02ae 2ae2c79 f38f576 d8e79ee 0fe02ae f38f576 2ae2c79 d8e79ee 2ae2c79 d8e79ee c6ce0ae 2ae2c79 d8e79ee 2ae2c79 d8e79ee 0fe02ae 2ae2c79 0fe02ae c6ce0ae d8e79ee 0fe02ae 2ae2c79 0fe02ae 2ae2c79 0fe02ae c6ce0ae 0fe02ae 2ae2c79 0fe02ae 2ae2c79 d8e79ee c6ce0ae 2ae2c79 d8e79ee c6ce0ae 2ae2c79 d8e79ee c6ce0ae d8e79ee 0fe02ae 2ae2c79 0fe02ae c6ce0ae d8e79ee c6ce0ae d8e79ee f38f576 c6ce0ae d8e79ee f38f576 d8e79ee 0fe02ae 2ae2c79 0fe02ae 2ae2c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import requests
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import gradio as gr
import datetime
import os
# API Endpoints
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
ELECTRICITY_PRICE_API = "https://www.elprisetjustnu.se/api/v1/prices"
ENERGY_CHARTS_API = "https://energy-charts.info/api/public_power"
# Fetch historical weather data
def fetch_weather_data(start_date="2023-01-01", end_date=None):
if end_date is None:
end_date = datetime.datetime.now().strftime('%Y-%m-%d')
params = {
"latitude": 59.3293, # Stockholm latitude
"longitude": 18.0686, # Stockholm longitude
"daily": "temperature_2m_mean,precipitation_sum,wind_speed_10m_max,wind_direction_10m_dominant",
"start_date": start_date,
"end_date": end_date,
"timezone": "Europe/Stockholm"
}
response = requests.get(WEATHER_API, params=params)
response.raise_for_status()
daily_data = response.json()["daily"]
return pd.DataFrame(daily_data)
# Fetch historical electricity prices
def fetch_electricity_prices():
today = datetime.datetime.now().strftime('%Y/%m-%d')
url = f"{ELECTRICITY_PRICE_API}/{today}_SE3.json"
response = requests.get(url)
response.raise_for_status()
return pd.DataFrame(response.json())
# Fetch energy production data using Energy-Charts API
def fetch_energy_production_data(start_date="2023-01-01", end_date=None):
if end_date is None:
end_date = datetime.datetime.now().strftime('%Y-%m-%d')
params = {
"country": "se", # Sweden country code
"start": start_date,
"end": end_date
}
response = requests.get(ENERGY_CHARTS_API, params=params)
response.raise_for_status()
data = response.json()
production_data = {
"unix_seconds": data["unix_seconds"],
**{ptype["name"]: ptype["data"] for ptype in data["production_types"]}
}
return pd.DataFrame(production_data)
# Prepare the dataset
def prepare_dataset(weather_data, electricity_data, energy_data):
dataset = pd.concat([weather_data, electricity_data, energy_data], axis=1)
dataset = dataset.dropna()
return dataset
# Train the model
def train_model(dataset):
X = dataset.drop("price", axis=1)
y = dataset["price"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = xgb.XGBRegressor(objective="reg:squarederror", n_estimators=100, learning_rate=0.1)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
rmse = mean_squared_error(y_test, predictions, squared=False)
model.save_model("electricity_price_model.json")
print(f"Model trained with RMSE: {rmse}")
return model
# Load the model and make predictions
def predict_price(features):
model = xgb.XGBRegressor()
model.load_model("electricity_price_model.json")
prediction = model.predict(pd.DataFrame([features]))
return prediction[0]
# Update predictions and save to file
def update_predictions():
# Fetch the latest data
weather_data = fetch_weather_data()
electricity_data = fetch_electricity_prices()
energy_data = fetch_energy_production_data()
# Prepare dataset
dataset = prepare_dataset(weather_data, electricity_data, energy_data)
# Load the model
model = xgb.XGBRegressor()
model.load_model("electricity_price_model.json")
# Generate predictions
predictions = model.predict(dataset.drop("price", axis=1))
# Save predictions to file
predictions_output = dataset.copy()
predictions_output["predicted_price"] = predictions
predictions_output.to_json("predictions.json", orient="records")
print("Predictions updated and saved.")
# Gradio Interface
def gradio_interface():
def wrapper(temp, precip, wind_speed, humidity, energy_price, electricity_price):
features = {
"temperature_2m": temp,
"precipitation": precip,
"wind_speed_10m": wind_speed,
"humidity": humidity,
"energy_price": energy_price,
"electricity_price": electricity_price
}
return predict_price(features)
interface = gr.Interface(
fn=wrapper,
inputs=[
gr.inputs.Number(label="Temperature (°C)"),
gr.inputs.Number(label="Precipitation (mm)"),
gr.inputs.Number(label="Wind Speed (m/s)"),
gr.inputs.Number(label="Humidity (%)"),
gr.inputs.Number(label="Energy Production Price"),
gr.inputs.Number(label="Historical Electricity Price")
],
outputs=gr.outputs.Textbox(label="Predicted Electricity Price"),
title="Electricity Price Prediction",
description="Predict future electricity prices based on weather and energy data."
)
interface.launch()
if __name__ == "__main__":
import sys
if len(sys.argv) > 1 and sys.argv[1] == "update":
update_predictions()
else:
# Fetch data
weather_data = fetch_weather_data()
electricity_data = fetch_electricity_prices()
energy_data = fetch_energy_production_data()
# Prepare dataset and train the model
dataset = prepare_dataset(weather_data, electricity_data, energy_data)
train_model(dataset)
# Launch Gradio interface
gradio_interface()
|