Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
import xgboost as xgb
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import os
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Scheduler
|
13 |
+
scheduler = BackgroundScheduler()
|
14 |
+
scheduler.start()
|
15 |
+
|
16 |
+
# Load the trained model
|
17 |
+
model = xgb.XGBRegressor()
|
18 |
+
model.load_model("electricity_price_model.json")
|
19 |
+
|
20 |
+
# Constants
|
21 |
+
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
|
22 |
+
ELECTRICITY_PRICE_API = "https://www.elprisetjustnu.se/api/v1/prices"
|
23 |
+
ENERGY_CHARTS_API = "https://api.energy-charts.info/public_power?"
|
24 |
+
PREDICTIONS_FILE = "predicted_prices.csv"
|
25 |
+
|
26 |
+
# Fetch weather data for the next day
|
27 |
+
def fetch_weather_data_for_tomorrow():
|
28 |
+
tomorrow = (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')
|
29 |
+
params = {
|
30 |
+
"latitude": 59.3293,
|
31 |
+
"longitude": 18.0686,
|
32 |
+
"daily": "temperature_2m_mean,precipitation_sum,wind_speed_10m_max,wind_direction_10m_dominant",
|
33 |
+
"start_date": tomorrow,
|
34 |
+
"end_date": tomorrow,
|
35 |
+
"timezone": "Europe/Stockholm"
|
36 |
+
}
|
37 |
+
response = requests.get(WEATHER_API, params=params)
|
38 |
+
response.raise_for_status()
|
39 |
+
data = response.json()["daily"]
|
40 |
+
return pd.DataFrame(data)
|
41 |
+
|
42 |
+
# Fetch energy production data for the current day
|
43 |
+
def fetch_energy_production_data():
|
44 |
+
today = datetime.now().strftime('%Y-%m-%d')
|
45 |
+
params = {"country": "se", "start": today, "end": today}
|
46 |
+
response = requests.get(ENERGY_CHARTS_API, params=params)
|
47 |
+
response.raise_for_status()
|
48 |
+
data = response.json()
|
49 |
+
|
50 |
+
if "production_types" in data:
|
51 |
+
production_data = {
|
52 |
+
"unix_seconds": data["unix_seconds"],
|
53 |
+
**{ptype["name"]: ptype["data"] for ptype in data["production_types"]}
|
54 |
+
}
|
55 |
+
energy_df = pd.DataFrame(production_data)
|
56 |
+
energy_df = energy_df.rename(columns={"unix_seconds": "time"})
|
57 |
+
energy_df["time"] = pd.to_datetime(energy_df["time"], unit="s", errors="coerce").dt.tz_localize(None)
|
58 |
+
return energy_df
|
59 |
+
else:
|
60 |
+
return pd.DataFrame()
|
61 |
+
|
62 |
+
# Fetch electricity prices for the current day
|
63 |
+
def fetch_current_electricity_prices():
|
64 |
+
today = datetime.now().strftime('%Y/%m-%d')
|
65 |
+
url = f"{ELECTRICITY_PRICE_API}/{today}_SE3.json"
|
66 |
+
response = requests.get(url)
|
67 |
+
response.raise_for_status()
|
68 |
+
data = response.json()
|
69 |
+
|
70 |
+
electricity_df = pd.DataFrame(data)
|
71 |
+
electricity_df = electricity_df.rename(columns={"time_start": "time"})
|
72 |
+
electricity_df["time"] = pd.to_datetime(electricity_df["time"], errors="coerce").dt.tz_localize(None)
|
73 |
+
return electricity_df
|
74 |
+
|
75 |
+
# Prepare dataset for prediction
|
76 |
+
def prepare_prediction_data():
|
77 |
+
energy_data = fetch_energy_production_data()
|
78 |
+
electricity_data = fetch_current_electricity_prices()
|
79 |
+
weather_data = fetch_weather_data_for_tomorrow()
|
80 |
+
|
81 |
+
dataset = pd.merge(energy_data, electricity_data, on="time", how="inner")
|
82 |
+
dataset = pd.merge(dataset, weather_data, on="time", how="outer")
|
83 |
+
dataset = dataset.dropna()
|
84 |
+
return dataset
|
85 |
+
|
86 |
+
# Predict electricity prices for the next day
|
87 |
+
def predict_next_day_price():
|
88 |
+
dataset = prepare_prediction_data()
|
89 |
+
X = dataset.drop(["SEK_per_kWh", "time"], axis=1, errors="ignore")
|
90 |
+
predictions = model.predict(X)
|
91 |
+
dataset["predicted_price"] = predictions
|
92 |
+
dataset.to_csv(PREDICTIONS_FILE, index=False)
|
93 |
+
generate_dashboard(dataset)
|
94 |
+
print("Predictions saved to 'predicted_prices.csv'.")
|
95 |
+
|
96 |
+
# Generate a dashboard for visualization
|
97 |
+
def generate_dashboard(data):
|
98 |
+
plt.figure(figsize=(10, 6))
|
99 |
+
plt.plot(data["time"], data["predicted_price"], label="Predicted Price", linestyle="--")
|
100 |
+
if "SEK_per_kWh" in data.columns:
|
101 |
+
plt.plot(data["time"], data["SEK_per_kWh"], label="Actual Price")
|
102 |
+
plt.xlabel("Time")
|
103 |
+
plt.ylabel("Electricity Price (SEK/kWh)")
|
104 |
+
plt.title("Electricity Prices: Predicted vs Actual")
|
105 |
+
plt.legend()
|
106 |
+
plt.grid()
|
107 |
+
plt.savefig("dashboard.png")
|
108 |
+
plt.close()
|
109 |
+
|
110 |
+
# Schedule daily updates
|
111 |
+
scheduler.add_job(predict_next_day_price, "cron", hour=23, minute=59)
|
112 |
+
|
113 |
+
# API: Get predictions
|
114 |
+
@app.get("/predictions")
|
115 |
+
def get_predictions():
|
116 |
+
if not os.path.exists(PREDICTIONS_FILE):
|
117 |
+
return {"error": "Predictions not available"}
|
118 |
+
predictions = pd.read_csv(PREDICTIONS_FILE)
|
119 |
+
return predictions.to_dict()
|
120 |
+
|
121 |
+
# API: Get dashboard
|
122 |
+
@app.get("/dashboard")
|
123 |
+
def get_dashboard():
|
124 |
+
if not os.path.exists("dashboard.png"):
|
125 |
+
return {"error": "Dashboard not available"}
|
126 |
+
return {"dashboard_url": "/dashboard.png"}
|