Spaces:
Sleeping
Sleeping
File size: 7,415 Bytes
eca7f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from functools import partial
from pathlib import Path
from typing import Iterable, Callable
import spacy
from spacy.training import Example
from spacy.tokens import DocBin, Doc
# make the factory work
# from scripts.rel_pipe import make_relation_extractor
# make the config work
# from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors
# from scripts.custom_comps.SpanCat_extention import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3, build_mean_max_reducer4
from typing import List, Tuple, cast
from thinc.api import Model, with_getitem, chain, list2ragged, Logistic
from thinc.api import Maxout, Linear, concatenate, glorot_uniform_init, PyTorchLSTM
from thinc.api import reduce_mean, reduce_max, reduce_first, reduce_last
from thinc.types import Ragged, Floats2d
from spacy.util import registry
from spacy.tokens import Doc
from spacy.ml.extract_spans import extract_spans
# @registry.layers("spacy.LinearLogistic.v1")
# def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
# """An output layer for multi-label classification. It uses a linear layer
# followed by a logistic activation.
# """
# return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
@registry.layers("mean_max_reducer.v1.5")
def build_mean_max_reducer1(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size, normalize=True, dropout=dropout),
)
@registry.layers("mean_max_reducer.v2")
def build_mean_max_reducer2(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, normalize=True, dropout=dropout),
Maxout(nO=hidden_size, normalize=True, dropout=dropout))
# @registry.layers("mean_max_reducer.v2")
# def build_mean_max_reducer2(hidden_size: int,
# depth: int) -> Model[Ragged, Floats2d]:
# """Reduce sequences by concatenating their mean and max pooled vectors,
# and then combine the concatenated vectors with a hidden layer.
# """
# return chain(
# concatenate(
# cast(Model[Ragged, Floats2d], reduce_last()),
# cast(Model[Ragged, Floats2d], reduce_first()),
# reduce_mean(),
# reduce_max(),
# ), Maxout(nO=hidden_size, normalize=True, dropout=0.0),
# PyTorchLSTM(nO=64, nI=hidden_size, bi=True, depth=depth, dropout=0.2))
@registry.layers("mean_max_reducer.v3")
def build_mean_max_reducer3(hidden_size: int,
maxout_pieces: int = 3,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size2,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size3,
nP=maxout_pieces,
normalize=True,
dropout=dropout))
@registry.layers("mean_max_reducer.v3.3")
def build_mean_max_reducer4(hidden_size: int,
depth: int) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size2, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size3, nP=3, normalize=True, dropout=0.0))
@registry.architectures("CustomSpanCategorizer.v2")
def build_spancat_model(
tok2vec: Model[List[Doc], List[Floats2d]],
reducer: Model[Ragged, Floats2d],
scorer: Model[Floats2d, Floats2d],
) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
"""Build a span categorizer model, given a token-to-vector model, a
reducer model to map the sequence of vectors for each span down to a single
vector, and a scorer model to map the vectors to probabilities.
tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
reducer (Model[Ragged, Floats2d]): The reducer model.
scorer (Model[Floats2d, Floats2d]): The scorer model.
"""
model = chain(
cast(
Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
with_getitem(
0,
chain(tok2vec,
cast(Model[List[Floats2d], Ragged], list2ragged()))),
),
extract_spans(),
reducer,
scorer,
)
model.set_ref("tok2vec", tok2vec)
model.set_ref("reducer", reducer)
model.set_ref("scorer", scorer)
return model
# @registry.architectures("spacy.SpanCategorizer.v1")
# def build_spancat_model(
# tok2vec: Model[List[Doc], List[Floats2d]],
# reducer: Model[Ragged, Floats2d],
# scorer: Model[Floats2d, Floats2d],
# ) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
# """Build a span categorizer model, given a token-to-vector model, a
# reducer model to map the sequence of vectors for each span down to a single
# vector, and a scorer model to map the vectors to probabilities.
# tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
# reducer (Model[Ragged, Floats2d]): The reducer model.
# scorer (Model[Floats2d, Floats2d]): The scorer model.
# """
# model = chain(
# cast(
# Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
# with_getitem(
# 0,
# chain(tok2vec,
# cast(Model[List[Floats2d], Ragged], list2ragged()))),
# ),
# extract_spans(),
# reducer,
# scorer,
# )
# model.set_ref("tok2vec", tok2vec)
# model.set_ref("reducer", reducer)
# model.set_ref("scorer", scorer)
# return model |