File size: 6,300 Bytes
eca7f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#
# This code is adapted from spacy-streamlit package by explosion
# https://github.com/explosion/spacy-streamlit/blob/master/spacy_streamlit/__init__.py
#

from typing import List, Sequence, Tuple, Optional, Dict, Union, Callable
import streamlit as st
import spacy
from spacy.language import Language
from spacy import displacy
import pandas as pd

import streamlit as st
from spacy_streamlit import visualize_spans
from spacy_streamlit.util import load_model, process_text, get_svg, get_html, LOGO

from pipeline.post_processors import (
    simple_table,
    const_table,
    ngrammar,
    diversity_values,
)
from skbio import diversity as dv

SPACY_VERSION = tuple(map(int, spacy.__version__.split(".")))

# fmt: off
# SPAN_ATTRS = ["text", "label_", "start", "end", "start_char", "end_char"]
SPAN_ATTRS = [
    "text",
    "label_",
    "start",
    "end",
]

CATEGORIES = ['ATTRIBUTION', "CITATION", "COUNTER", "DENY", "ENDOPHORIC", "ENTERTAIN", "JUSTIFYING", "MONOGLOSS", "PROCLAIM", "SOURCES"]

def visualize_spans(
    doc: Union[spacy.tokens.Doc, Dict[str, str]],
    *,
    spans_key: str = "sc",
    attrs: List[str] = SPAN_ATTRS,
    show_table: bool = True,
    title: Optional[str] = "Spans",
    manual: bool = False,
    displacy_options: Optional[Dict] = None,
    simple: bool = True,
    show_confidence: bool = False,
    show_diversity: bool = False,
    show_ngrams: bool = False,
):
    """
    Visualizer for spans.
    doc (Doc, Dict): The document to visualize.
    spans_key (str): Which spans key to render spans from. Default is "sc".
    attrs (list):  The attributes on the entity Span to be labeled. Attributes are displayed only when the show_table
    argument is True.
    show_table (bool): Flag signifying whether to show a table with accompanying span attributes.
    title (str): The title displayed at the top of the Spans visualization.
    manual (bool): Flag signifying whether the doc argument is a Doc object or a List of Dicts containing span information.
    displacy_options (Dict): Dictionary of options to be passed to the displacy render method for generating the HTML to be rendered.
      See https://spacy.io/api/top-level#displacy_options-span
    """
    if SPACY_VERSION < (3, 3, 0):
        raise ValueError(
            f"'visualize_spans' requires spacy>=3.3.0. You have spacy=={spacy.__version__}"
        )
    if not displacy_options:
        displacy_options = dict()
    displacy_options["spans_key"] = spans_key

    if title:
        st.header(title)

    if manual:
        if show_table:
            st.warning(
                "When the parameter 'manual' is set to True, the parameter 'show_table' must be set to False."
            )
        if not isinstance(doc, dict):
            st.warning(
                "When the parameter 'manual' is set to True, the parameter 'doc' must be of type 'Dict', not 'spacy.tokens.Doc'."
            )
    html = displacy.render(
        doc,
        style="span",
        options=displacy_options,
        manual=manual,
    )
    st.write(f"{get_html(html)}", unsafe_allow_html=True)

    if show_table:
        # data = [
        #     [str(getattr(span, attr)) for attr in attrs] + [str(score)]
        #     for span, score in zip(doc.spans[spans_key], doc.spans[spans_key].attrs['scores'])
        # ]
        if simple:
            data, cols = simple_table(doc, spans_key='sc', attrs=attrs)
        else:
            data, cols = const_table(doc, spans_key='sc', attrs=attrs)

        # seq = [s for s in doc.spans[spans_key]]

        if data:
            df = pd.DataFrame(data, columns=cols)
            df = df.astype({"start": int, "end": int})
            df = df.sort_values(by= ['start'])
            st.subheader("Engagement span information")

            st.dataframe(
                df.style.highlight_between(subset='Conf. score', right=.7))

            counts = df['label_'].value_counts().reindex(CATEGORIES, fill_value=0)

            if show_confidence:
                st.subheader("Label counts & Diagnostic confidence score summary")

                print(counts)
                print(list(counts))
                label_counts = df.groupby('label_').agg({
                    "label_":
                    'count',
                    "Conf. score": ['median', 'min', 'max']
                }).round(4).reindex(CATEGORIES, fill_value=0)

                st.dataframe(label_counts)
                # print(list(label_counts))

            if show_ngrams:
                sequences = list(df['label_'])

                # Engagement ngrams
                span_bigrams = ngrammar(seq=sequences, n=2, concat=True)
                span_trigrams = ngrammar(seq=sequences, n=3, concat=True)

                st.dataframe(pd.DataFrame(span_bigrams))
                st.code(span_trigrams)


                st.subheader("Engagement label by grammatical function")
                label_dep = pd.crosstab(df['grammatical realization'], df['label_'])
                st.dataframe(label_dep)

            if show_diversity:
                st.subheader('Diversity of rhetorical features')
                # st.markdown(
                #     f"Shannon's index: {dv.alpha.shannon(list(counts), base=2): .3f}")
                # st.markdown(
                #     f"Simpson's e index: {1 - dv.alpha.simpson_e(list(counts)): .3f}")
                
                st.markdown("##### Entropy based diversity measures")

                filename = "NA"

                div = diversity_values(list(counts))
                div_data = pd.DataFrame.from_dict(div, orient='index')
                # st.dataframe(div_data)            
                
                doc_data = pd.concat([div_data, counts, ], axis = 0).T
                filename = "NA"
                doc_data.insert(0, "filename", filename, True)
                doc_data.insert(1, "nwords", len(doc), True)
                st.dataframe(doc_data)            
                
            # st.markdown(str(dv.alpha_diversity(metric = "shannon", counts=counts, ids = ['ENTERTAIN', 'ATTRIBUTE', 'CITATION', 'COUNTER', 'DENY', 'ENDORSE', 'PRONOUNCE', 'CONCUR', 'MONOGLOSS', 'SOURCES', 'JUSTIFYING'])))
            # print(dv.get_alpha_diversity_metrics())