File size: 7,730 Bytes
73f6946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import requests
from PIL import Image
from pdf2image import convert_from_path
from typing import List, Union, Dict, Optional, Tuple
from io import BytesIO
import base64
import numpy as np
import json

prompt = """You are an advanced document parsing bot. Given the fixture schedule I provided, you need to parse out 

1. the name of the fixture
2. the company that produces this fixture
3. the part number of this fixture. It is a series of specification codes connected with - , and you can get the info by reading the texts marked in a different color or reading the top bar. Include every specification code in a correct order in your answer. 
4. the input wattage of this fixture, short answer. Please answer the wattage according to the part number you found in question 3 

Please format your response in json format
{
    "fixture_name": <fixture name>,
    "manufacture_name": <company name>,
    "mfr": <part number>,
    "input wattage": <numerical input wattage>
}

---
For example
{
    "fixture_name": "SW24/1.5 Led Strips - Static White",
    "manufacture_name": "Q-Tran Inc.",
    "mfr": "SW24-1.5-DRY-30-BW-BW-WH-CL2-535",
    "input wattage": "1.5W"
}"""

def query_openai_api(messages, model, temperature=0, api_key=None, organization_key=None, json_mode=False):
    try:
        url = "https://api.openai.com/v1/chat/completions"
        if organization_key is not None:
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}",
                "OpenAI-Organization": f"{organization_key}",
            }
        else:
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}",
            }
        data = {"model": model, "messages": messages, "temperature": temperature}
        if json_mode:
            data["response_format"] = {"type": "json_object"}

        # Make the POST request and return the response
        response = requests.post(url, headers=headers, data=json.dumps(data)).json()
        print(response)
        return response["choices"][0]["message"]["content"].lstrip(), response
    except Exception as e:
        print(f"An error occurred: {e}")
        return f"API_ERROR: {e}", None

class GPT4V_Client:
    def __init__(self, api_key, organization_key, model_name="gpt-4-vision-preview", max_tokens=512):
        self.api_key = api_key
        self.organization_key = organization_key
        # self.client = OpenAI(api_key=api_key)
        self.model_name = model_name
        self.max_tokens = max_tokens

    def chat(self, messages, json_mode):
        return query_openai_api(messages, self.model_name, api_key=self.api_key, organization_key=self.organization_key, json_mode=json_mode)

    def one_step_chat(
        self,
        text,
        image: Union[Image.Image, np.ndarray],
        system_msg: Optional[str] = None,
        json_mode=False,
    ):
        jpeg_buffer = BytesIO()

        # Save the image as JPEG to the buffer
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        image = image.convert("RGB")
        image.save(jpeg_buffer, format="JPEG")

        # Get the byte data from the buffer
        jpeg_data = jpeg_buffer.getvalue()

        # Encode the JPEG image data in base64
        jpg_base64 = base64.b64encode(jpeg_data)

        # If you need it in string format
        jpg_base64_str = jpg_base64.decode("utf-8")
        messages = []
        if system_msg is not None:
            messages.append({"role": "system", "content": system_msg})
        messages += [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": text},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{jpg_base64_str}"
                        },
                    },
                ],
            }
        ]
        return self.chat(messages, json_mode=json_mode)

    def one_step_multi_image_chat(
        self,
        text,
        images: list[Union[Image.Image, np.ndarray]],
        system_msg: Optional[str] = None,
        json_mode=False,
    ):
        """
        images: [{"image": PIL.image, "detail": "high" or "low }]

        For low res mode, we expect a 512px x 512px image. For high res mode, the short side of the image should be less than 768px and the long side should be less than 2,000px.
        """
        details = [i["detail"] for i in images]
        img_strs = []
        for img_info in images:
            image = img_info["image"]
            jpeg_buffer = BytesIO()

            # Save the image as JPEG to the buffer
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            image = image.convert("RGB")
            image.save(jpeg_buffer, format="JPEG")

            # Get the byte data from the buffer
            jpeg_data = jpeg_buffer.getvalue()

            # Encode the JPEG image data in base64
            jpg_base64 = base64.b64encode(jpeg_data)

            # If you need it in string format
            jpg_base64_str = jpg_base64.decode("utf-8")
            img_strs.append(f"data:image/jpeg;base64,{jpg_base64_str}")
        messages = []
        if system_msg is not None:
            messages.append({"role": "system", "content": system_msg})

        img_sub_msg = [
            {
                "type": "image_url",
                "image_url": {"url": img_str, "detail": detail},
            }
            for img_str, detail in zip(img_strs, details)
        ]
        messages += [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": text},
                ]
                + img_sub_msg,
            }
        ]
        return self.chat(messages, json_mode=json_mode)
    
def markdown_json_to_table(markdown_json_string, iteration):
    if markdown_json_string[0] == '`':
        json_string = markdown_json_string.strip("```json\n").rstrip("```")
        json_object = json.loads(json_string)
        values = json_object.values()
        if iteration == 0:
            headers = json_object.keys()
            markdown_table = "| " + " | ".join(headers) + " |\n" + \
                            "|---" * len(json_object) + "|\n" + \
                            "| " + " | ".join(map(str, values)) + " |"
        else:
            markdown_table =  "|---" * len(json_object) + "|\n" + \
                        "| " + " | ".join(map(str, values)) + " |"
    else: 
        markdown_table = ""
    return markdown_table

def gptRead(cutsheets, api_key, organization_key):
    fixtureInfo = ""
    iteration = 0
    for cutsheet in cutsheets:
        source = (convert_from_path(cutsheet.name))[0]
        client = GPT4V_Client(api_key=api_key, organization_key=organization_key)
        fixtureInfo += markdown_json_to_table(client.one_step_chat(prompt, source)[0], iteration)
        iteration += 1
    return fixtureInfo

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.Markdown("# Lighting Manufacture Cutsheet GPT Tool")
        api_key = gr.Textbox(label = "Input your ChatGPT4 API Key: ")
        organization_key = gr.Textbox(label = "Input your ChatGPT4 API Organization Key: ", info = "(optional)")
        # image = gr.Image()
        file_uploader = gr.UploadButton("Upload cutsheets", type="filepath", file_count="multiple")
        form = gr.Markdown()
        file_uploader.upload(gptRead, [file_uploader, api_key, organization_key], form)

    demo.launch(share=True)