File size: 9,585 Bytes
73f6946
 
 
 
 
 
 
 
 
 
 
 
 
 
8143c4e
 
 
73f6946
 
 
 
 
8143c4e
73f6946
 
 
 
 
 
 
 
 
8143c4e
73f6946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8143c4e
73f6946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8143c4e
73f6946
 
 
 
 
 
 
 
 
 
 
 
 
 
8143c4e
73f6946
 
 
8143c4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f6946
 
 
 
8143c4e
 
73f6946
8143c4e
73f6946
8143c4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f6946
8143c4e
73f6946
 
 
 
8143c4e
 
73f6946
 
 
 
8143c4e
 
73f6946
8143c4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import requests
from PIL import Image
from pdf2image import convert_from_path
from typing import List, Union, Dict, Optional, Tuple
from io import BytesIO
import base64
import numpy as np
import json

prompt = """You are an advanced document parsing bot. Given the fixture schedule I provided, you need to parse out 

1. the name of the fixture
2. the company that produces this fixture
3. the description of this fixture. This is a 20-word description which summarize the size, function and the mounting method of the fixture and mention any necessary accesories. For example: 1" x 1" recessed downlight.
4. the part number of this fixture. It is a series of specification codes connected with - , and you can get the info by reading the texts marked in a different color or reading the top bar. Include every specification code in a correct order in your answer. 
5. the input wattage of this fixture, short answer. Please answer the wattage according to the part number you found in question 3 

Please format your response in json format
{
    "fixture_name": <fixture name>,
    "manufacture_name": <company name>,
    "fixture_description": <description>,
    "mfr": <part number>,
    "input wattage": <numerical input wattage>
}

---
For example
{
    "fixture_name": "SW24/1.5 Led Strips - Static White",
    "manufacture_name": "Q-Tran Inc.",
    "fixture_description": "Surface mounted static white LED strip."
    "mfr": "SW24-1.5-DRY-30-BW-BW-WH-CL2-535",
    "input wattage": "1.5W"
}"""

def query_openai_api(messages, model, temperature=0, api_key=None, organization_key=None, json_mode=False):
    try:
        url = "https://api.openai.com/v1/chat/completions"
        if organization_key is not None:
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}",
                "OpenAI-Organization": f"{organization_key}",
            }
        else:
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}",
            }
        data = {"model": model, "messages": messages, "temperature": temperature}
        if json_mode:
            data["response_format"] = {"type": "json_object"}

        response = requests.post(url, headers=headers, data=json.dumps(data)).json()
        print(response)
        return response["choices"][0]["message"]["content"].lstrip(), response
    except Exception as e:
        print(f"An error occurred: {e}")
        return f"API_ERROR: {e}", None

class GPT4V_Client:
    def __init__(self, api_key, organization_key, model_name="gpt-4o", max_tokens=512):
        self.api_key = api_key
        self.organization_key = organization_key
        self.model_name = model_name
        self.max_tokens = max_tokens

    def chat(self, messages, json_mode):
        return query_openai_api(messages, self.model_name, api_key=self.api_key, organization_key=self.organization_key, json_mode=json_mode)

    def one_step_chat(
        self,
        text,
        image: Union[Image.Image, np.ndarray],
        system_msg: Optional[str] = None,
        json_mode=False,
    ):
        jpeg_buffer = BytesIO()

        # Save the image as JPEG to the buffer
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        image = image.convert("RGB")
        image.save(jpeg_buffer, format="JPEG")

        # Get the byte data from the buffer
        jpeg_data = jpeg_buffer.getvalue()

        # Encode the JPEG image data in base64
        jpg_base64 = base64.b64encode(jpeg_data)

        # If you need it in string format
        jpg_base64_str = jpg_base64.decode("utf-8")
        messages = []
        if system_msg is not None:
            messages.append({"role": "system", "content": system_msg})
        messages += [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": text},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{jpg_base64_str}"
                        },
                    },
                ],
            }
        ]
        return self.chat(messages, json_mode=json_mode)

    def one_step_multi_image_chat(
        self,
        text,
        images: list[Union[Image.Image, np.ndarray]],
        system_msg: Optional[str] = None,
        json_mode=False,
    ):
        details = [i["detail"] for i in images]
        img_strs = []
        for img_info in images:
            image = img_info["image"]
            jpeg_buffer = BytesIO()

            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            image = image.convert("RGB")
            image.save(jpeg_buffer, format="JPEG")
            jpeg_data = jpeg_buffer.getvalue()
            jpg_base64 = base64.b64encode(jpeg_data)
            jpg_base64_str = jpg_base64.decode("utf-8")
            img_strs.append(f"data:image/jpeg;base64,{jpg_base64_str}")

        messages = []
        if system_msg is not None:
            messages.append({"role": "system", "content": system_msg})

        img_sub_msg = [
            {
                "type": "image_url",
                "image_url": {"url": img_str, "detail": detail},
            }
            for img_str, detail in zip(img_strs, details)
        ]
        messages += [
            {
                "role": "user",
                "content": [{"type": "text", "text": text}] + img_sub_msg,
            }
        ]
        return self.chat(messages, json_mode=json_mode)

def markdown_json_to_table(markdown_json_string, iteration, thumbnail_md):
    """
    Convert the GPT JSON string into a markdown row with the first column as the PDF thumbnail.
    Args:
        markdown_json_string: the raw markdown (JSON) string from GPT
        iteration: which row # we are on
        thumbnail_md: something like ![pdfpage]()
    Returns:
        A string with either:
          - The header row + first data row, if iteration==0
          - Additional data row, if iteration>0
    """
    # Try to detect if the JSON is enclosed in triple-backticks
    # so we can parse it out properly:
    if markdown_json_string.strip().startswith("```"):
        # Remove the backticks and possible extra notations
        json_string = markdown_json_string.strip().strip("```").strip("json").strip()
    else:
        # If the model didn't wrap it in markdown
        json_string = markdown_json_string.strip()

    # Safely parse JSON
    try:
        json_obj = json.loads(json_string)
    except Exception:
        # If it can't parse, return empty
        return ""

    # Turn the JSON object into a list of values for easier table building
    # e.g. [fixture_name, manufacture_name, mfr, input wattage]
    keys = list(json_obj.keys())
    values = list(json_obj.values())

    # We want the first column to be the PDF thumbnail
    # So the table columns become: [Thumbnail, key1, key2, key3, ...]
    # This means we have one extra column in front compared to the JSON.

    # If iteration == 0, produce header
    # e.g. | Thumbnail | fixture_name | manufacture_name | mfr | input wattage |
    if iteration == 0:
        header = ["Thumbnail"] + keys
        header_row = "| " + " | ".join(header) + " |\n"
        sep_row = "|" + "|".join(["---"] * len(header)) + "|\n"
    else:
        header_row = ""
        sep_row = ""

    # Then produce the data row
    # e.g. | ![pdfpage]() | "SW24..." | "Q-Tran Inc." | ...
    str_values = [str(v) for v in values]
    data_row = "| " + thumbnail_md + " | " + " | ".join(str_values) + " |\n"

    return header_row + sep_row + data_row


def gptRead(cutsheets, api_key, organization_key):
    fixtureInfo = ""
    iteration = 0
    client = GPT4V_Client(api_key=api_key, organization_key=organization_key)

    for cutsheet in cutsheets:
        # Convert the first page of the PDF into an image
        source = (convert_from_path(cutsheet.name))[0]

        # Create a smaller thumbnail
        thumbnail_img = source.copy()
        thumbnail_img.thumbnail((100, 100))

        # Encode the thumbnail to base64 for embedding in Markdown
        thumb_io = BytesIO()
        thumbnail_img.save(thumb_io, format="JPEG")
        base64_thumb = base64.b64encode(thumb_io.getvalue()).decode('utf-8')
        thumbnail_md = f"![pdfpage](data:image/jpeg;base64,{base64_thumb})"

        # Chat with GPT about the original (non-thumbnail) image
        response_text, _ = client.one_step_chat(prompt, source)

        # Convert the GPT JSON to a Markdown row, including the thumbnail in the first column
        fixtureInfo += markdown_json_to_table(response_text, iteration, thumbnail_md)

        iteration += 1

    return fixtureInfo

if __name__ == "__main__":
    with gr.Blocks() as demo:
        api_key = gr.Textbox(label="Input your ChatGPT4 API Key: ")
        organization_key = gr.Textbox(label="Input your ChatGPT4 API Organization Key: ", info="(optional)")
        gr.Markdown("# Lighting Manufacture Cutsheet GPT Tool")
        file_uploader = gr.UploadButton("Upload cutsheets", type="filepath", file_count="multiple")
        form = gr.Markdown()

        # When user uploads, call gptRead -> produce the final Markdown w/ table
        file_uploader.upload(fn=gptRead, inputs=[file_uploader, api_key, organization_key], outputs=form)

    demo.launch(share=True)