import gradio as gr import requests from PIL import Image from pdf2image import convert_from_path from typing import List, Union, Dict, Optional, Tuple from io import BytesIO import base64 import numpy as np import json prompt = """You are an advanced document parsing bot. Given the fixture schedule I provided, you need to parse out 1. the name of the fixture 2. the company that produces this fixture 3. the description of this fixture. This is a 20-word description which summarize the size, function and the mounting method of the fixture and mention any necessary accesories. For example: 1" x 1" recessed downlight. 4. the part number of this fixture. It is a series of specification codes connected with - , and you can get the info by reading the texts marked in a different color or reading the top bar. Include every specification code in a correct order in your answer. 5. the input wattage of this fixture, short answer. Please answer the wattage according to the part number you found in question 3 Please format your response in json format { "fixture_name": , "manufacture_name": , "fixture_description": , "mfr": , "input wattage": } --- For example { "fixture_name": "SW24/1.5 Led Strips - Static White", "manufacture_name": "Q-Tran Inc.", "fixture_description": "Surface mounted static white LED strip." "mfr": "SW24-1.5-DRY-30-BW-BW-WH-CL2-535", "input wattage": "1.5W" }""" def query_openai_api(messages, model, temperature=0, api_key=None, organization_key=None, json_mode=False): try: url = "https://api.openai.com/v1/chat/completions" if organization_key is not None: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}", "OpenAI-Organization": f"{organization_key}", } else: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}", } data = {"model": model, "messages": messages, "temperature": temperature} if json_mode: data["response_format"] = {"type": "json_object"} response = requests.post(url, headers=headers, data=json.dumps(data)).json() print(response) return response["choices"][0]["message"]["content"].lstrip(), response except Exception as e: print(f"An error occurred: {e}") return f"API_ERROR: {e}", None class GPT4V_Client: def __init__(self, api_key, organization_key, model_name="gpt-4o", max_tokens=512): self.api_key = api_key self.organization_key = organization_key self.model_name = model_name self.max_tokens = max_tokens def chat(self, messages, json_mode): return query_openai_api(messages, self.model_name, api_key=self.api_key, organization_key=self.organization_key, json_mode=json_mode) def one_step_chat( self, text, image: Union[Image.Image, np.ndarray], system_msg: Optional[str] = None, json_mode=False, ): jpeg_buffer = BytesIO() # Save the image as JPEG to the buffer if isinstance(image, np.ndarray): image = Image.fromarray(image) image = image.convert("RGB") image.save(jpeg_buffer, format="JPEG") # Get the byte data from the buffer jpeg_data = jpeg_buffer.getvalue() # Encode the JPEG image data in base64 jpg_base64 = base64.b64encode(jpeg_data) # If you need it in string format jpg_base64_str = jpg_base64.decode("utf-8") messages = [] if system_msg is not None: messages.append({"role": "system", "content": system_msg}) messages += [ { "role": "user", "content": [ {"type": "text", "text": text}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{jpg_base64_str}" }, }, ], } ] return self.chat(messages, json_mode=json_mode) def one_step_multi_image_chat( self, text, images: list[Union[Image.Image, np.ndarray]], system_msg: Optional[str] = None, json_mode=False, ): details = [i["detail"] for i in images] img_strs = [] for img_info in images: image = img_info["image"] jpeg_buffer = BytesIO() if isinstance(image, np.ndarray): image = Image.fromarray(image) image = image.convert("RGB") image.save(jpeg_buffer, format="JPEG") jpeg_data = jpeg_buffer.getvalue() jpg_base64 = base64.b64encode(jpeg_data) jpg_base64_str = jpg_base64.decode("utf-8") img_strs.append(f"data:image/jpeg;base64,{jpg_base64_str}") messages = [] if system_msg is not None: messages.append({"role": "system", "content": system_msg}) img_sub_msg = [ { "type": "image_url", "image_url": {"url": img_str, "detail": detail}, } for img_str, detail in zip(img_strs, details) ] messages += [ { "role": "user", "content": [{"type": "text", "text": text}] + img_sub_msg, } ] return self.chat(messages, json_mode=json_mode) def markdown_json_to_table(markdown_json_string, iteration, thumbnail_md): """ Convert the GPT JSON string into a markdown row with the first column as the PDF thumbnail. Args: markdown_json_string: the raw markdown (JSON) string from GPT iteration: which row # we are on thumbnail_md: something like ![pdfpage]() Returns: A string with either: - The header row + first data row, if iteration==0 - Additional data row, if iteration>0 """ # Try to detect if the JSON is enclosed in triple-backticks # so we can parse it out properly: if markdown_json_string.strip().startswith("```"): # Remove the backticks and possible extra notations json_string = markdown_json_string.strip().strip("```").strip("json").strip() else: # If the model didn't wrap it in markdown json_string = markdown_json_string.strip() # Safely parse JSON try: json_obj = json.loads(json_string) except Exception: # If it can't parse, return empty return "" # Turn the JSON object into a list of values for easier table building # e.g. [fixture_name, manufacture_name, mfr, input wattage] keys = list(json_obj.keys()) values = list(json_obj.values()) # We want the first column to be the PDF thumbnail # So the table columns become: [Thumbnail, key1, key2, key3, ...] # This means we have one extra column in front compared to the JSON. # If iteration == 0, produce header # e.g. | Thumbnail | fixture_name | manufacture_name | mfr | input wattage | if iteration == 0: header = ["Thumbnail"] + keys header_row = "| " + " | ".join(header) + " |\n" sep_row = "|" + "|".join(["---"] * len(header)) + "|\n" else: header_row = "" sep_row = "" # Then produce the data row # e.g. | ![pdfpage]() | "SW24..." | "Q-Tran Inc." | ... str_values = [str(v) for v in values] data_row = "| " + thumbnail_md + " | " + " | ".join(str_values) + " |\n" return header_row + sep_row + data_row def gptRead(cutsheets, api_key, organization_key): fixtureInfo = "" iteration = 0 client = GPT4V_Client(api_key=api_key, organization_key=organization_key) for cutsheet in cutsheets: # Convert the first page of the PDF into an image source = (convert_from_path(cutsheet.name))[0] # Create a smaller thumbnail thumbnail_img = source.copy() thumbnail_img.thumbnail((100, 100)) # Encode the thumbnail to base64 for embedding in Markdown thumb_io = BytesIO() thumbnail_img.save(thumb_io, format="JPEG") base64_thumb = base64.b64encode(thumb_io.getvalue()).decode('utf-8') thumbnail_md = f"![pdfpage](data:image/jpeg;base64,{base64_thumb})" # Chat with GPT about the original (non-thumbnail) image response_text, _ = client.one_step_chat(prompt, source) # Convert the GPT JSON to a Markdown row, including the thumbnail in the first column fixtureInfo += markdown_json_to_table(response_text, iteration, thumbnail_md) iteration += 1 return fixtureInfo if __name__ == "__main__": with gr.Blocks() as demo: api_key = gr.Textbox(label="Input your ChatGPT4 API Key: ") organization_key = gr.Textbox(label="Input your ChatGPT4 API Organization Key: ", info="(optional)") gr.Markdown("# Lighting Manufacture Cutsheet GPT Tool") file_uploader = gr.UploadButton("Upload cutsheets", type="filepath", file_count="multiple") form = gr.Markdown() # When user uploads, call gptRead -> produce the final Markdown w/ table file_uploader.upload(fn=gptRead, inputs=[file_uploader, api_key, organization_key], outputs=form) demo.launch(share=True)