Spaces:
Sleeping
Sleeping
File size: 7,765 Bytes
1b3c845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
from dotenv import load_dotenv
from langchain_huggingface import HuggingFaceEndpoint
import streamlit as st
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
# μ¬μ©ν Hugging Face λͺ¨λΈ IDλ₯Ό μ μν©λλ€.
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# .env νμΌ λ‘λ
load_dotenv()
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
"""
Hugging Face μΆλ‘ μ μν μΈμ΄ λͺ¨λΈμ λ°νν©λλ€.
맀κ°λ³μ:
- model_id (str): Hugging Face λͺ¨λΈ μ μ₯μμ IDμ
λλ€.
- max_new_tokens (int): μμ±ν μ μλ μ΅λ μ ν ν° μμ
λλ€.
- temperature (float): λͺ¨λΈμμ μνλ§ν λμ μ¨λ κ°μ
λλ€.
λ°νκ°:
- llm (HuggingFaceEndpoint): Hugging Face μΆλ‘ μ μν μΈμ΄ λͺ¨λΈμ
λλ€.
"""
# HuggingFaceEndpointλ₯Ό μ¬μ©νμ¬ μΈμ΄ λͺ¨λΈμ μ΄κΈ°νν©λλ€.
llm = HuggingFaceEndpoint(
repo_id=model_id, # μ¬μ©ν λͺ¨λΈ ID
max_new_tokens=max_new_tokens, # μμ±ν μ΅λ ν ν° μ
temperature=temperature, # μνλ§ μ μ¨λ μ€μ
token=os.getenv("HF_TOKEN"), # Hugging Face API ν ν° (νκ²½ λ³μμμ κ°μ Έμ΄)
)
return llm # μ΄κΈ°νλ μΈμ΄ λͺ¨λΈμ λ°νν©λλ€.
# Streamlit μ± μ€μ μ ꡬμ±ν©λλ€.
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€")
st.title("κ°μΈ HuggingFace μ±λ΄")
st.markdown(
f"*μ΄κ²μ HuggingFace transformers λΌμ΄λΈλ¬λ¦¬λ₯Ό μ¬μ©νμ¬ ν
μ€νΈ μ
λ ₯μ λν μλ΅μ μμ±νλ κ°λ¨ν μ±λ΄μ
λλ€. {model_id} λͺ¨λΈμ μ¬μ©ν©λλ€.*"
)
# μλ°νμ λν μΈμ
μνλ₯Ό μ΄κΈ°νν©λλ€.
if "avatars" not in st.session_state:
st.session_state.avatars = {"user": None, "assistant": None}
# μ¬μ©μ ν
μ€νΈ μ
λ ₯μ λν μΈμ
μνλ₯Ό μ΄κΈ°νν©λλ€.
if "user_text" not in st.session_state:
st.session_state.user_text = None
# λͺ¨λΈ 맀κ°λ³μμ λν μΈμ
μνλ₯Ό μ΄κΈ°νν©λλ€.
if "max_response_length" not in st.session_state:
st.session_state.max_response_length = 256
# μμ€ν
λ©μμ§μ λν μΈμ
μνλ₯Ό μ΄κΈ°νν©λλ€.
if "system_message" not in st.session_state:
st.session_state.system_message = "μΈκ° μ¬μ©μμ λννλ μΉμ ν AI"
# μμ λ©μμ§μ λν μΈμ
μνλ₯Ό μ΄κΈ°νν©λλ€.
if "starter_message" not in st.session_state:
st.session_state.starter_message = "μλ
νμΈμ! μ€λ 무μμ λμλ릴κΉμ?"
# μ€μ μ μν μ¬μ΄λλ°λ₯Ό ꡬμ±ν©λλ€.
with st.sidebar:
st.header("μμ€ν
μ€μ ")
# AI μ€μ
st.session_state.system_message = st.text_area(
"μμ€ν
λ©μμ§", value="λΉμ μ μΈκ° μ¬μ©μμ λννλ μΉμ ν AIμ
λλ€."
)
st.session_state.starter_message = st.text_area(
"첫 λ²μ§Έ AI λ©μμ§", value="μλ
νμΈμ! μ€λ 무μμ λμλ릴κΉμ?"
)
# λͺ¨λΈ μ€μ
st.session_state.max_response_length = st.number_input("μ΅λ μλ΅ κΈΈμ΄", value=128)
# μλ°ν μ ν
st.markdown("*μλ°ν μ ν:*")
col1, col2 = st.columns(2)
with col1:
st.session_state.avatars["assistant"] = st.selectbox(
"AI μλ°ν", options=["π€", "π¬", "π€"], index=0
)
with col2:
st.session_state.avatars["user"] = st.selectbox(
"μ¬μ©μ μλ°ν", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0
)
# μ±ν
κΈ°λ‘ μ΄κΈ°ν λ²νΌ
reset_history = st.button("μ±ν
κΈ°λ‘ μ΄κΈ°ν")
# μ±ν
κΈ°λ‘μ μ΄κΈ°ννκ±°λ, μ΄κΈ°ν λ²νΌμ΄ λλ Έμ κ²½μ° μ΄κΈ°νν©λλ€.
if "chat_history" not in st.session_state or reset_history:
st.session_state.chat_history = [
{"role": "assistant", "content": st.session_state.starter_message}
]
def get_response(
system_message,
chat_history,
user_text,
eos_token_id=["User"],
max_new_tokens=256,
get_llm_hf_kws={},
):
"""
μ±λ΄ λͺ¨λΈλ‘λΆν° μλ΅μ μμ±ν©λλ€.
맀κ°λ³μ:
system_message (str): λνμ μμ€ν
λ©μμ§μ
λλ€.
chat_history (list): μ΄μ μ±ν
λ©μμ§ λͺ©λ‘μ
λλ€.
user_text (str): μ¬μ©μμ μ
λ ₯ ν
μ€νΈμ
λλ€.
model_id (str, optional): μ¬μ©ν Hugging Face λͺ¨λΈμ IDμ
λλ€.
eos_token_id (list, optional): λ¬Έμ₯ μ’
λ£ ν ν° ID λͺ©λ‘μ
λλ€.
max_new_tokens (int, optional): μμ±ν μ μλ μ΅λ μ ν ν° μμ
λλ€.
get_llm_hf_kws (dict, optional): get_llm_hf ν¨μμ μ λ¬ν μΆκ° ν€μλ μΈμμ
λλ€.
λ°νκ°:
tuple: μμ±λ μλ΅κ³Ό μ
λ°μ΄νΈλ μ±ν
κΈ°λ‘μ ν¬ν¨νλ ννμ
λλ€.
"""
# λͺ¨λΈμ μ€μ ν©λλ€.
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
# ν둬ννΈ ν
νλ¦Ώμ μμ±ν©λλ€.
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nνμ¬ λν:\n{chat_history}\n\n"
"\nμ¬μ©μ: {user_text}.\n [/INST]"
"\nAI:"
)
)
# ν둬ννΈλ₯Ό μ°κ²°νμ¬ μ±ν
체μΈμ λ§λλλ€.
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key="content")
# μλ΅μ μμ±ν©λλ€.
response = chat.invoke(
input=dict(
system_message=system_message,
user_text=user_text,
chat_history=chat_history,
)
)
# "AI:" μ λμ¬λ₯Ό μ κ±°ν©λλ€.
response = response.split("AI:")[-1]
# μ±ν
κΈ°λ‘μ μ
λ°μ΄νΈν©λλ€.
chat_history.append({"role": "user", "content": user_text})
chat_history.append({"role": "assistant", "content": response})
return response, chat_history
# μ±ν
μΈν°νμ΄μ€λ₯Ό μ€μ ν©λλ€.
chat_interface = st.container(border=True)
with chat_interface:
output_container = st.container()
st.session_state.user_text = st.chat_input(
placeholder="μ¬κΈ°μ ν
μ€νΈλ₯Ό μ
λ ₯νμΈμ."
)
# μ±ν
λ©μμ§λ₯Ό νμν©λλ€.
with output_container:
# μ±ν
κΈ°λ‘μ μλ κ° λ©μμ§μ λν΄ λ°λ³΅ν©λλ€.
for message in st.session_state.chat_history:
# μμ€ν
λ©μμ§λ 건λλλλ€.
if message["role"] == "system":
continue
# μ¬λ°λ₯Έ μλ°νλ₯Ό μ¬μ©νμ¬ μ±ν
λ©μμ§λ₯Ό νμν©λλ€.
with st.chat_message(
message["role"], avatar=st.session_state["avatars"][message["role"]]
):
st.markdown(message["content"])
# μ¬μ©μκ° μ ν
μ€νΈλ₯Ό μ
λ ₯νμ λ:
if st.session_state.user_text:
# μ¬μ©μμ μ λ©μμ§λ₯Ό μ¦μ νμν©λλ€.
with st.chat_message("user", avatar=st.session_state.avatars["user"]):
st.markdown(st.session_state.user_text)
# μλ΅μ κΈ°λ€λ¦¬λ λμ μ€νΌλ μν νμμ€μ νμν©λλ€.
with st.chat_message("assistant", avatar=st.session_state.avatars["assistant"]):
with st.spinner("μκ° μ€..."):
# μμ€ν
ν둬ννΈ, μ¬μ©μ ν
μ€νΈ λ° κΈ°λ‘μ μ¬μ©νμ¬ μΆλ‘ APIλ₯Ό νΈμΆν©λλ€.
response, st.session_state.chat_history = get_response(
system_message=st.session_state.system_message,
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
max_new_tokens=st.session_state.max_response_length,
)
st.markdown(response)
|