File size: 8,382 Bytes
69d24df a1f4d16 03eadbc 69d24df ba5adb3 4ac21b5 a1f4d16 69d24df a1f4d16 69d24df 03eadbc 69d24df d8de0fb 69d24df d8de0fb a1f4d16 69d24df 26a39a1 69d24df a1f4d16 143d179 a1f4d16 69d24df 03eadbc 69d24df a1f4d16 69d24df 26a39a1 69d24df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLInpaintPipeline,
DPMSolverMultistepScheduler
)
DESCRIPTION = """
# [Visionix Playground](https://huggingface.co/spaces/ehristoforu/Visionix-Playground)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
"ehristoforu/Visionix-alpha",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
pipe_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(
"https://huggingface.co/ehristoforu/Visionix-alpha-inpainting/blob/main/Visionix-alpha-inpainting.safetensors",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe_inpaint.scheduler = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config)
pipe_inpaint.to('cuda')
def get_model(model):
if model == "Alpha inpaint":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(durarion=50, enable_queue=True)
def generate(
model,
inpaint_image,
mask_image,
blur_factor,
strength,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 5.5,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = None
if model == "Alpha":
images = pipe(
prompt=prompt,
negative_prompt=f"{negative_prompt}",
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
num_images_per_prompt=1,
output_type="pil",
).images
elif model == "Alpha inpaint":
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image, blur_factor=blur_factor)
images = pipe_inpaint(
prompt=prompt,
image=inpaint_image,
mask_image=blurred_mask,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
strength=strength,
num_images_per_prompt=1,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"neon holography crystal cat",
"a cat eating a piece of cheese",
"an astronaut riding a horse in space",
"a cartoon of a boy playing with a tiger",
"a cute robot artist painting on an easel, concept art",
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(title="Visionix Playground", css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Row():
model = gr.Radio(
label="Model",
choices=["Alpha", "Alpha inpaint"],
value="Alpha",
interactive=True,
)
md_mask = gr.Markdown("""
⚠️ To generate an inpaint mask, go [here](https://huggingface.co/spaces/ehristoforu/inpaint-mask-maker).
""", visible=False)
inpaint_image = gr.Image(label="Inpaint Image", interactive=True, scale=5, visible=False, type="pil")
mask_image = gr.Image(label="Mask Image", interactive=True, scale=5, visible=False, type="pil")
blur_factor = gr.Slider(label="Mask Blur Factor", minimum=0, maximum=100, value=4, step=1, interactive=True, visible=False)
strength = gr.Slider(label="Denoising Strength", minimum=0.00, maximum=1.00, value=0.70, step=0.01, interactive=True, visible=False)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=8,
lines=6,
value="cartoon, 3D, disfigured, bad, art, deformed, extra limbs, weird, blurry, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn, hands, poorly drawn face, mutation, ugly, bad, anatomy, bad proportions, extra limbs, clone, clone-faced, cross proportions, missing arms, malformed limbs, missing legs, mutated, hands, fused fingers, too many fingers, photo shop, video game, ugly, tiling, cross-eye, mutation of eyes, long neck, bonnet, hat, beanie, cap, B&W",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20,
step=0.1,
value=5.5,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
model.change(
fn=get_model,
inputs=model,
outputs=[md_mask, inpaint_image, mask_image, blur_factor, strength],
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model,
inpaint_image,
mask_image,
blur_factor,
strength,
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |